1887

Abstract

The C-terminal region of the gene was sequenced in 11 ampicillin-resistant and 5 ampicillin-susceptible isolates of animal origin, and compared with a reference sequence (GenBank accession no. X84860). Eight different alleles (designated A–H) were detected when amino acid changes in the region 461–629 were considered. Three of these alleles (A–C) were detected in ampicillin-susceptible isolates (MIC range 1–8 μg ml), and included the changes 470H→Q, 471V→I, 487Q→L, 581I→V, 595E→A or 622E→D. The remaining five alleles (D–H) were found in ampicillin-resistant isolates (MIC range 32–256 μg ml); three of these alleles (F–H) presented a serine insertion at position 466′, in addition to other important amino acid changes (485M→A, 496N→K, 499A→T, 525E→D, 586V→L or 629E→V). The other two alleles presented the amino acid changes 496N→K and 629E→V (allele D), and 470H→Q (allele F). A correlation between deduced amino acid changes in PBP5 and ampicillin MICs was detected in animal isolates.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46778-0
2007-02-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/2/236.html?itemId=/content/journal/jmm/10.1099/jmm.0.46778-0&mimeType=html&fmt=ahah

References

  1. Eberhardt, C., Kuerschner, L. & Weiss, D. S. ( 2003; ). Probing the catalytic activity of a cell division-specific transpeptidase in vivo with β-lactams. J Bacteriol 185, 3726–3734.[CrossRef]
    [Google Scholar]
  2. Fontana, R., Cerini, R., Longoni, P., Grossato, A. & Canepari, P. ( 1983; ). Identification of a streptococcal penicillin-binding protein that reacts very slowly with penicillin. J Bacteriol 155, 1343–1350.
    [Google Scholar]
  3. Fontana, R., Aldegheri, M., Ligozzi, M., Lopez, H., Sucari, A. & Satta, G. ( 1994; ). Overproduction of a low-affinity penicillin-binding protein and high-level ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 38, 1980–1983.[CrossRef]
    [Google Scholar]
  4. Jureen, R., Top, J., Mohn, S. C., Harthug, S., Langeland, N. & Willems, R. J. ( 2003; ). Molecular characterization of ampicillin-resistant Enterococcus faecium isolates from hospitalized patients in Norway. J Clin Microbiol 41, 2330–2336.[CrossRef]
    [Google Scholar]
  5. Jureen, R., Mohn, S. C., Harthug, S., Haarr, L. & Langeland, N. ( 2004; ). Role of penicillin-binding protein 5 C-terminal amino acid substitutions in conferring ampicillin resistance in Norwegian clinical strains of Enterococcus faecium. APMIS 112, 291–298.[CrossRef]
    [Google Scholar]
  6. Kak, V. & Chow, J. W. ( 2002; ). Acquired antibiotic resistances in enterococci. In The Enterococci; Pathogenesis, Molecular Biology and Antibiotic Resistance, pp. 355–357. Washington, DC: American Society for Microbiology.
  7. Klare, I., Konstabel, C., Badstübner, D., Werner, G. & Witte, W. ( 2003).; Occurrence and spread of antibiotic resistances in Enterococcus faecium. Int J Food Microbiol 88, 269–290.[CrossRef]
    [Google Scholar]
  8. Leszczynski, J. F. & Rose, G. D. ( 1986; ). Loops in globular proteins: a novel category of secondary structure. Science 234, 849–855.[CrossRef]
    [Google Scholar]
  9. Ligozzi, M., Pittaluga, F. & Fontana, R. ( 1996; ). Modification of penicillin-binding protein 5 associated with high-level ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 40, 354–357.
    [Google Scholar]
  10. Marshall, S. A., Sutton, L. D. & Jones, R. N. ( 1995; ). Evaluation of S1 chromogenic cephalosporin β-lactamase disk assay tested against Gram-positive anaerobes, coagulase-negative staphylococci, Prevotella spp. and Enterococcus spp. Diagn Microbiol Infect Dis 22, 353–355.[CrossRef]
    [Google Scholar]
  11. Mollerach, M. E., Partoune, P., Coyette, J. & Ghuysen, J. M. ( 1996; ). Importance of the E-46-D-160 polypeptide segment of the non-penicillin-binding module for the folding of the low-affinity, multimodular class B penicillin-binding protein 5 of Enterococcus hirae. J Bacteriol 178, 1774–1775.
    [Google Scholar]
  12. National Committee for Clinical Laboratory Standards ( 2005; ). Performance Standards for Antimicrobial Susceptibility Testing, 15th informational supplement M100-S15. Wayne, PA: National Committee for Clinical Laboratory Standards.
  13. Poeta, P., Costa, D., Rodrigues, J. & Torres, C. ( 2006; ). Antimicrobial resistance and the mechanisms implicated in faecal enterococci from healthy humans, poultry and pets in Portugal. Int J Antimicrob Agents 27, 131–137.[CrossRef]
    [Google Scholar]
  14. Rice, L. B., Carias, L. L., Hutton-Thomas, R., Sifaoui, F., Gutmann, L. & Rudin, S. D. ( 2001; ). Penicillin-binding protein 5 and expression of ampicillin resistance in Enterococcus faecium. Antimicrob Agents Chemother 45, 1480–1486.[CrossRef]
    [Google Scholar]
  15. Rice, L. B., Bellais, S., Carias, L., Hutton-Thomas, R., Bonomo, R. A., Caspers, P., Page, M. G. P. & Gutmann, L. ( 2004; ). Impact of specific pbp5 mutations on expression of β-lactam resistance in Enterococcus faecium. Antimicrob Agents Chemother 48, 3028–3032.[CrossRef]
    [Google Scholar]
  16. Rice, L. B., Carias, L. L., Rudin, S., Lakticová, V., Wood, A. & Hutton-Thomas, R. ( 2005; ). Enterococcus faecium low-affinity pbp5 is a transferable determinant. Antimicrob Agents Chemother 49, 5007–5012.[CrossRef]
    [Google Scholar]
  17. Rybkine, T., Mainardi, J. L., Sougakoff, W., Collatz, E. & Gutmann, L. ( 1998; ). Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of β-lactam resistance. J Infect Dis 178, 159–163.[CrossRef]
    [Google Scholar]
  18. Sauvage, E., Kerff, F., Fonze, E., Herman, R., Schoot, B., Marquette, J. P., Taburet, Y., Prevost, D., Dumas, J. & other authors ( 2002; ). The 2.4-Å crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin. Cell Mol Life Sci 59, 1223–1232.[CrossRef]
    [Google Scholar]
  19. Sifaoui, F., Arthur, M., Rice, L. & Gutmann, L. ( 2001; ). Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob Agents Chemother 45, 2594–2597.[CrossRef]
    [Google Scholar]
  20. Williamson, R., Calderwood, S. B., Moellering, R. C., Jr & Tomasz, A. ( 1983; ). Studies on the mechanism of intrinsic resistance to β-lactam antibiotic in group D streptococci. J Gen Microbiol 129, 813–822.
    [Google Scholar]
  21. Zorzi, W., Zhou, X. Y., Dardenne, O., Lamotte, J., Raze, D., Pierre, J., Gutmann, L. & Coyette, J. ( 1996; ). Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium. J Bacteriol 178, 4948–4957.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46778-0
Loading
/content/journal/jmm/10.1099/jmm.0.46778-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error