1887

Abstract

Plague still poses a significant threat to human health, and interest has been renewed recently in the possible use of as a biological weapon by terrorists. The septicaemic and pneumonic forms are always lethal if untreated. Attempts to treat this deadly disease date back to the era of global pandemics, when various methods were explored. The successful isolation of the plague pathogen led to the beginning of more scientific approaches to the treatment and cure of plague. This subsequently led to specific antibiotic prophylaxis and therapy for . The use of antibiotics such as tetracycline and streptomycin for the treatment of plague has been embraced by the World Health Organization Expert Committee on Plague as the ‘gold standard’ treatment. However, concerns regarding the development of antibiotic-resistant strains have led to the exploration of alternatives to antibiotics. Several investigators have looked into the use of alternatives, such as immunotherapy, non-pathogen-specific immunomodulatory therapy, phage therapy, bacteriocin therapy, and treatment with inhibitors of virulence factors. The alternative therapies reported in this review should be further investigated by comprehensive studies of their clinical application for the treatment of plague.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46697-0
2006-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/11/1461.html?itemId=/content/journal/jmm/10.1099/jmm.0.46697-0&mimeType=html&fmt=ahah

References

  1. Achtman, M., Zurth, K., Morelli, G., Torrea, G., Guiyoule, A. & Carniel, E. ( 1999; ). Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96, 14043–14048.[CrossRef]
    [Google Scholar]
  2. Afanas'ev, M. I. & Vaks, P. B. ( 1903; ). Human Plague. St Petersburg, Russia: Modern Medicine and Hygiene Press (in Russian).
  3. Albizo, J. M. & Surgalla, M. J. ( 1970; ). Isolation and biological characterization of Pasteurella pestis endotoxin. Infect Immun 2, 229–236.
    [Google Scholar]
  4. Alksne, L. E. ( 2002; ). Virulence as a target for antimicrobial chemotherapy. Expert Opin Investig Drugs 11, 1149–1159.[CrossRef]
    [Google Scholar]
  5. Almog, Y. ( 2003; ). Statins, inflammation, and sepsis: hypothesis. Chest 124, 740–743.[CrossRef]
    [Google Scholar]
  6. Almog, Y., Shefer, A., Novack, V., Maimon, N., Barski, L., Eizinger, M., Friger, M., Zeller, L. & Danon, A. ( 2004; ). Prior statin therapy is associated with a decreased rate of severe sepsis. Circulation 110, 880–885.[CrossRef]
    [Google Scholar]
  7. Amlie-Lefond, C., Paz, D. A., Connelly, M. P., Huffnagle, G. B., Dunn, K. S., Whelan, N. T. & Whelan, H. T. ( 2005; ). Innate immunity for biodefense: a strategy whose time has come. J Allergy Clin Immunol 116, 1334–1342.[CrossRef]
    [Google Scholar]
  8. Anderson, G. W., Worsham, P. L., Bolt, C., Andrews, G. P., Welkos, S., Friedlander, A. M. & Burans, J. P. ( 1997; ). Protection of mice from fatal bubonic and pneumonic plague by passive immunization with monoclonal antibodies against the F1 protein of Yersinia pestis. Am J Trop Med 56, 471–473.
    [Google Scholar]
  9. Ando, H., Takamura, T., Ota, T., Nagai, Y. & Kobayashi, K. ( 2000; ). Cerivastatin improves survival of mice with lipopolysaccharide-induced sepsis. J Pharmacol Exp Ther 294, 1043–1046.
    [Google Scholar]
  10. Andrews, G. P., Strachan, S. T., Benner, G. E., Sample, A. K., Anderson, G. W., Jr, Adamovicz, J. J., Welkos, S. L., Pullen, J. K. & Friedlander, A. M. ( 1999; ). Protective efficacy of recombinant Yersinia outer proteins against bubonic plague caused by encapsulated and nonencapsulated Yersinia pestis. Infect Immun 67, 1533–1537.
    [Google Scholar]
  11. Anisimov, A. P. ( 2002a; ). Factors of Yersinia pestis proving circulation and persistence of plague pathogen in ecosystems of natural foci. Communication 2. Mol Gen Mikrobiol Virusol 4, 3–11 (in Russian).
    [Google Scholar]
  12. Anisimov, A. P. ( 2002b; ). Yersinia pestis factors, assuring circulation and maintenance of the plague pathogen in natural foci ecosystems. Report 1. Mol Gen Mikrobiol Virusol 3, 3–23 (in Russian).
    [Google Scholar]
  13. Anisimov, A. P., Lindler, L. E. & Pier, G. B. ( 2004; ). Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev 17, 434–464 (erratum 17, 695).[CrossRef]
    [Google Scholar]
  14. Anisimov, A. P., Dentovskaya, S. V., Titareva, G. M. & 9 other authors ( 2005; ). Intraspecies and temperature-dependent variations in susceptibility of Yersinia pestis to bactericidal action of serum and polymyxin B. Infect Immun 73, 7324–7331.[CrossRef]
    [Google Scholar]
  15. Aparin, G. P. & Golubinskii, E. P. ( 1989; ). Plague Microbiology Manual. Irkutsk, USSR: Irkutsk State University (in Russian).
  16. Becker, T. M., Poland, J. D., Quan, T. J., White, M. E., Mann, J. M. & Barnes, A. M. ( 1987; ). Plague meningitis – a retrospective analysis of cases reported in the United States, 1970–1979. West J Med 147, 554–557.
    [Google Scholar]
  17. Bengoechea, J.-A., Lindner, B., Seydel, U., Díaz, R. & Moriyón, I. ( 1998; ). Yersinia pseudotuberculosis and Yersinia pestis are more resistant to bactericidal cationic peptides than Yersinia enterocolitica. Microbiology 144, 1509–1515.[CrossRef]
    [Google Scholar]
  18. Berchieri, A. J., Lovell, M. A. & Barrow, P. A. ( 1991; ). The activity in the chicken alimentary tract of bacteriophages lytic for Salmonella typhimurium. Res Microbiol 142, 541–549.[CrossRef]
    [Google Scholar]
  19. Bichowsky-Slomnicki, L. & Ben-Efraim, S. ( 1963; ). Biological activities in extracts of Pasteurella pestis and their relation to the ‘pH 6 antigen’. J Bacteriol 86, 101–111.
    [Google Scholar]
  20. Blinkova, L. P., Butova, L. G., Sergeev, V. V., Elkina, S. I., Al'tshuler, M. L. & Kalina, N. G. ( 2003; ). Effectiveness of the oral administration of tomicide in experimental infection. Zh Mikrobiol Epidemiol Immunobiol 1, 74–77 (in Russian).
    [Google Scholar]
  21. Bosio, C. M., Goodyear, A. W. & Dow, S. W. ( 2005; ). Early interaction of Yersinia pestis with APCs in the lung. J Immunol 175, 6750–6756.[CrossRef]
    [Google Scholar]
  22. Braude, A. I. & Siemienski, J. S. ( 1965; ). The influence of bacteriocins on resistance to infection by Gram-negative bacteria. I. The effect of colicin on bactericidal power of blood. J Clin Invest 44, 849–859.[CrossRef]
    [Google Scholar]
  23. Braun, V. ( 2001; ). Iron uptake mechanisms and their regulation in pathogenic bacteria. Int J Med Microbiol 291, 67–79.[CrossRef]
    [Google Scholar]
  24. Bregenholt, S. & Haurum, J. ( 2004; ). Pathogen-specific recombinant human polyclonal antibodies: biodefence applications. Expert Opin Biol Ther 4, 387–396.[CrossRef]
    [Google Scholar]
  25. Briko, N. I. & Zhuravlev, M. V. ( 2004; ). Use of tomicid in prophylaxis of respiratory streptococcal infection in the organized groups of children of pre-school age. Zh Mikrobiol Epidemiol Immunobiol 4, 17–20 (in Russian).
    [Google Scholar]
  26. Brubaker, R. R. ( 1991; ). Factors promoting acute and chronic disease caused by yersiniae. Clin Microbiol Rev 4, 309–324.
    [Google Scholar]
  27. Brubaker, R. R. ( 2004; ). The recent emergence of plague: a process of felonious evolution. Microb Ecol 47, 293–299.
    [Google Scholar]
  28. Brubaker, R. R., Beesley, E. D. & Surgalla, M. J. ( 1965; ). Pasteurella pestis: role of pesticin I and iron in experimental plague. Science 149, 422–424.[CrossRef]
    [Google Scholar]
  29. Buchwald, U. K. & Pirofski, L. ( 2003; ). Immune therapy for infectious diseases at the dawn of the 21st century: the past, present and future role of antibody therapy, therapeutic vaccination and biological response modifiers. Curr Pharm Des 9, 945–968.[CrossRef]
    [Google Scholar]
  30. Burrows, T. W. ( 1965; ). A possible role for pesticin in virulence of Pasteurella pestis. Zentbl Bakteriol Parasitenkd Infektkr Hyg Abt 1 Orig Reihe A 196, 315–317.
    [Google Scholar]
  31. Butler, T. ( 1983; ). Plague and Other Yersinia Infections. New York: Plenum.
  32. Byrne, W. R., Welkos, S. L., Pitt, M. L. & 7 other authors ( 1998; ). Antibiotic treatment of experimental pneumonic plague in mice. Antimicrob Agents Chemother 42, 675–681.[CrossRef]
    [Google Scholar]
  33. Carcillo, J. A., Davis, A. L. & Zaritsky, A. ( 1991; ). Role of early fluid resuscitation in pediatric septic shock. JAMA (J Am Med Assoc) 266, 1242–1245.[CrossRef]
    [Google Scholar]
  34. Carman, J. A. ( 1938; ). Prontosil in the treatment of oriental plague. East Afr Med J 14, 362–366.
    [Google Scholar]
  35. Casadevall, A. ( 2002; ). Passive antibody administration (immediate immunity) as a specific defense against biological weapons. Emerg Infect Dis 8, 833–841.[CrossRef]
    [Google Scholar]
  36. Casadevall, A. ( 2005; ). Antibody-based defense strategies against biological weapons. ASM News 71, 28–33.
    [Google Scholar]
  37. Cavanaugh, D. C. & Randall, R. ( 1959; ). The role of multiplication of Pasteurella pestis in mononuclear phagocytes in the pathogenesis of fleaborne plague. J Immunol 83, 348–363.
    [Google Scholar]
  38. Chen, Y. T., Xie, J. & Seto, C. T. ( 2003; ). Peptidic α-ketocarboxylic acids and sulphonamides as inhibitors of protein tyrosine phosphatases. J Org Chem 68, 4123–4125.[CrossRef]
    [Google Scholar]
  39. Cohen, J. & Glauser, M. P. ( 1991; ). Septic shock: treatment. Lancet 338, 736–739.[CrossRef]
    [Google Scholar]
  40. Cornelis, G. R. ( 2002; ). Yersinia type III secretion: send in the effectors. J Cell Biol 158, 401–408.[CrossRef]
    [Google Scholar]
  41. Cowan, C., Philipovskiy, A. V., Wulff-Strobel, C. R., Ye, Z. & Straley, S. C. ( 2005; ). Anti-LcrV antibody inhibits delivery of Yops by Yersinia pestis KIM5 by directly promoting phagocytosis. Infect Immun 73, 6127–6137.[CrossRef]
    [Google Scholar]
  42. Damasko, C., Konietzny, A., Kaspar, H., Appel, B., Dersch, P. & Strauch, E. ( 2005; ). Studies of the efficacy of enterocoliticin, a phage-tail like bacteriocin, as antimicrobial agent against Yersinia enterocolitica serotype O3 in a cell culture system and in mice. J Vet Med B Infect Dis Vet Public Health 52, 171–179.[CrossRef]
    [Google Scholar]
  43. Dennis, D. T., Gratz, N., Poland, J. D. & Tikhomirov, E. ( 1999; ). Plague Manual: Epidemiology, Distribution, Surveillance and Control. Geneva: World Health Organization.
  44. d'Herelle, F. ( 1925; ). Essai de traitement de la peste bubonique par le bacteriophage. La Presse Medicale 84, 1393–1394 (in French).
    [Google Scholar]
  45. Diatlov, I. A. & Antonova, O. A. ( 1999; ). The detection and characteristics of the Yersinia pestis antigen exhibiting the properties of S-layer proteins. Zh Mikrobiol Epidemiol Immunobiol 4, 90–91 (in Russian).
    [Google Scholar]
  46. Dmitrovskii, V. G. ( 1994; ). Toxic component of pathogenesis of plague infectious process: infective toxic shock. In Prophylaxis and Means of Prevention of Plague, pp. 15–16. Edited by V. M. Stepanov. Almaty, Kazakhstan: Scientific-Manufacturing Association of the Plague-Control Establishments (in Russian).
  47. Domaradskii, I. V. ( 1993; ). Plague: Contemporary State, Assumptions, Problems. Saratov, Russia: Saratov Medical Institute Press (in Russian).
  48. Domaradskii, I. V. ( 1998; ). Plague. Moscow: Meditsina Press (in Russian).
  49. Drancourt, M., Roux, V., Dang, L. V. & 7 other authors ( 2004; ). Genotyping, Orientalis-like Yersinia pestis, and plague pandemics. Emerg Infect Dis 10, 1585–1592.[CrossRef]
    [Google Scholar]
  50. Ehrenkranz, N. F. & Meyer, K. F. ( 1955; ). Studies on immunization against plague, VIII: study of three immunizing preparations in protecting primates against pneumonic plague. J Infect Dis 96, 138–144.[CrossRef]
    [Google Scholar]
  51. Ferreras, J. A., Ryu, J. S., Lello, F. D., Tan, D. S. & Quadri, L. E. ( 2005; ). Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1, 29–32.[CrossRef]
    [Google Scholar]
  52. Filippov, A. A., Elliott, J. M., Bobrov, A. G., Kirillina, O. A., Motin, V. L., Chain, P. S. & Garcia, E. ( 2005; ). Description of the genomic nucleotide sequence of the plague diagnostic bacteriophage, L-413C. The Problems of Particularly Dangerous Infections (Saratov) 90, 49–52 (in Russian).
    [Google Scholar]
  53. Fimiani, V., Cavallaro, A., Ainis, T., Baranovskaia, G., Ketlinskaya, O. & Kozhemyakin, L. ( 2002; ). Immunomodulatory effect of glutoxim on some activities of isolated human neutrophils and in whole blood. Immunopharmacol Immunotoxicol 24, 627–638.[CrossRef]
    [Google Scholar]
  54. Finlay, B. B. & Falkow, S. ( 1997; ). Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61, 136–169.
    [Google Scholar]
  55. Flu, P. C. ( 1929; ). Antipest bakteriophag und die prophylaxe und therapie der experimentellen pest. Zentbl Bakteriol I Orig 113, 468–473 (in German).
    [Google Scholar]
  56. Fonquernie, I. ( 1932; ). Essais de traitement de la peste par le bacteriophage. Bull Sol Pathol Exot 25, 677 (in French).
    [Google Scholar]
  57. Frean, J., Klugman, K. P., Arntzen, L. & Bukofzer, S. ( 2003; ). Susceptibility of Yersinia pestis to novel and conventional antimicrobial agents. J Antimicrob Chemother 52, 294–296.[CrossRef]
    [Google Scholar]
  58. Friedlander, A. M., Welkos, S. L., Worsham, P. L., Andrews, G. P., Heath, D. G., Anderson, G. W., Jr, Pitt, M. L., Estep, J. & Davis, K. ( 1995; ). Relationship between virulence and immunity as revealed in recent studies of the F1 capsule of Yersinia pestis. Clin Infect Dis 21 (Suppl. 2), S178–S181.[CrossRef]
    [Google Scholar]
  59. Gage, K. L. & Kosoy, M. Y. ( 2005; ). Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50, 505–528.[CrossRef]
    [Google Scholar]
  60. Galimand, M., Guiyoule, A., Gerbaud, G., Rasoamanana, B., Chanteau, S., Carniel, E. & Courvalin, P. ( 1997; ). Multiple antibiotic resistance in Yersinia pestis mediated by a self-transferable plasmid. N Engl J Med 337, 677–680.[CrossRef]
    [Google Scholar]
  61. Garcia, E., Elliott, J. M., Ramanculov, E., Chain, P. S., Chu, M. C. & Molineux, I. J. ( 2003; ). The genome sequence of Yersinia pestis bacteriophage φA1122 reveals an intimate history with the coliphage T3 and T7 genomes. J Bacteriol 185, 5248–5262.[CrossRef]
    [Google Scholar]
  62. Goode, D., Allen, V. M. & Barrow, P. A. ( 2003; ). Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol 69, 5032–5036.[CrossRef]
    [Google Scholar]
  63. Green, M., Rogers, D., Russell, P., Stagg, A. J., Bell, D. L., Eley, S. M., Titball, R. W. & Williamson, E. D. ( 1999; ). The SCID/Beige mouse as a model to investigate protection against Yersinia pestis. FEMS Immunol Med Microbiol 23, 107–113.[CrossRef]
    [Google Scholar]
  64. Guiyoule, A., Grimont, F., Iteman, I., Grimont, P. D., Lefèvre, M. & Carniel, E. ( 1994; ). Plague pandemics investigated by ribotyping of Yersinia pestis strains. J Clin Microbiol 32, 634–641.
    [Google Scholar]
  65. Hardaway, R. M. ( 1982; ). Pathology and pathophysiology of disseminated intravascular coagulation. In Pathophysiology of Shock, Anoxia and Ischaemia, pp. 186–197. Edited by R. A. Cowley & B. F. Trump. Baltimore, MD: Williams & Wilkins.
  66. Hill, J., Leary, S. E. C., Griffin, K. F., Williamson, E. D. & Titball, R. W. ( 1997; ). Regions of Yersinia pestis V antigen that contribute to protection against plague identified by passive and active immunization. Infect Immun 65, 4476–4482.
    [Google Scholar]
  67. Hill, J., Eyles, J. E., Elvin, S. J., Healey, G. D., Lukaszewski, R. A. & Titball, R. W. ( 2006; ). Administration of antibody to the lung protects mice against pneumonic plague. Infect Immun 74, 3068–3070.[CrossRef]
    [Google Scholar]
  68. Hinnebusch, B. J. ( 2003; ). Transmission factors: Yersinia pestis genes required to infect the flea vector of plague. Adv Exp Med Biol 529, 55–62.
    [Google Scholar]
  69. Hinnebusch, B. J., Rosso, M. L., Schwan, T. G. & Carniel, E. ( 2002; ). High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 46, 349–354.[CrossRef]
    [Google Scholar]
  70. Hornibrook, J. W. ( 1946; ). Streptomycin in experimental plague. Publ Health Rep 61, 535–538.[CrossRef]
    [Google Scholar]
  71. Hurtle, W., Lindler, L., Fan, W., Shoemaker, D., Henchal, E. & Norwood, D. ( 2003; ). Detection and identification of ciprofloxacin-resistant Yersinia pestis by denaturing high-performance liquid chromatography. J Clin Microbiol 41, 3273–3283.[CrossRef]
    [Google Scholar]
  72. Inglesby, T. V., Dennis, D. T., Henderson, D. A. & 16 other authors ( 2000; ). Plague as a biological weapon: medical and public health management. JAMA (J Am Med Assoc) 283, 2281–2290.[CrossRef]
    [Google Scholar]
  73. Jacobs, R. F., Sowell, M. K., Moss, M. M. & Fiser, D. H. ( 1990; ). Septic shock in children: bacterial etiologies and temporal relationships. Pediatr Infect Dis J 9, 196–200.[CrossRef]
    [Google Scholar]
  74. Jacobson, M. A. & Young, L. S. ( 1986; ). New developments in the treatment of Gram-negative bacteremia. West J Med 144, 185–194.
    [Google Scholar]
  75. Kang, A. S., Burton, D. R. & Lerner, R. A. ( 1991; ). Combinatorial immunoglobulin libraries in phage. Methods: Companion Methods Enzymol 2, 111–118.[CrossRef]
    [Google Scholar]
  76. Kauppi, A. M., Nordfelth, R., Hagglund, U., Wolf-Watz, H. & Elofsson, M. ( 2003a; ). Salicylanilides are potent inhibitors of type III secretion in Yersinia. Adv Exp Med Biol 529, 97–100.
    [Google Scholar]
  77. Kauppi, A. M., Nordfelth, R., Uvell, H., Wolf-Watz, H. & Elofsson, M. ( 2003b; ). Targeting bacterial virulence: inhibitors of type III secretion in Yersinia. Chem Biol 10, 241–249.[CrossRef]
    [Google Scholar]
  78. Keller, M. A. & Stiehm, E. R. ( 2000; ). Passive immunity in prevention and treatment of infectious diseases. Clin Microbiol Rev 13, 602–614.[CrossRef]
    [Google Scholar]
  79. Kienle, Z., Emody, L., Svanborg, C. & O'Toole, P. W. ( 1992; ). Adhesive properties conferred by the plasminogen activator of Yersinia pestis. J Gen Microbiol 138, 1679–1687.[CrossRef]
    [Google Scholar]
  80. Kohler, G. & Milstein, C. ( 1975; ). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.[CrossRef]
    [Google Scholar]
  81. Kool, J. L. ( 2005; ). Risk of person-to-person transmission of pneumonic plague. Clin Infect Dis 40, 1166–1172.[CrossRef]
    [Google Scholar]
  82. Krishna, G. & Chitkara, R. K. ( 2003; ). Pneumonic plague. Semin Respir Infect 18, 159–167.
    [Google Scholar]
  83. Kuberski, T., Robinson, L. & Schurgin, A. ( 2003; ). A case of plague successfully treated with ciprofloxacin and sympathetic blockade for treatment of gangrene. Clin Infect Dis 36, 521–523.[CrossRef]
    [Google Scholar]
  84. Lachowicz, T. ( 1965; ). Investigations on staphylococcins. Zentbl Bakteriol Parasitenkd Infektkr Hyg Abt 1 Orig Reihe A 196, 340–351.
    [Google Scholar]
  85. Lähteenmäki, K., Virkola, R., Sarén, A., Emödy, L. & Korhonen, T. K. ( 1998; ). Expression of plasminogen activator Pla of Yersinia pestis enhances bacterial attachment to the mammalian extracellular matrix. Infect Immun 66, 5755–5762.
    [Google Scholar]
  86. Leary, S. E. C., Williamson, E. D., Griffin, K. F., Russell, P., Eley, S. M. & Titball, R. W. ( 1995; ). Active immunization with recombinant V antigen from Yersinia pestis protects mice against plague. Infect Immun 63, 2854–2858.
    [Google Scholar]
  87. Lee, K., Gao, Y., Yao, Z. J., Phan, J., Wu, L., Liang, J., Waugh, D. S., Zhang, Z. Y. & Burke, T. R., Jr ( 2003; ). Tripeptide inhibitors of Yersinia protein-tyrosine phosphatase. Bioorg Med Chem Lett 13, 2577–2581.[CrossRef]
    [Google Scholar]
  88. Lee, Y. M., Almqvist, F. & Hultgren, S. J. ( 2003; ). Targeting virulence for antimicrobial chemotherapy. Curr Opin Pharmacol 3, 513–519.[CrossRef]
    [Google Scholar]
  89. Lee, K., Boovanahalli, S. K., Nam, K. Y. & 9 other authors ( 2005; ). Synthesis of tripeptides as potent Yersinia protein tyrosine phosphatase inhibitors. Bioorg Med Chem Lett 15, 4037–4042.[CrossRef]
    [Google Scholar]
  90. Liappis, A. P., Kan, V. L., Rochester, C. G. & Simon, G. L. ( 2001; ). The effect of statins on mortality in patients with bacteremia. Clin Infect Dis 33, 1352–1357.[CrossRef]
    [Google Scholar]
  91. Lien-Teh, W. ( 1926; ). A Treatise on Pneumonic Plague. League of Nations, Health Organisation. Printed by Berger-Levrault.
  92. Lien-Teh, W., Chun, J. W. H., Pollitzer, R. & Wu, C. Y. ( 1936; ). Plague: a Manual for Medical & Public Health Workers. Shanghai.
  93. Liles, W. C. ( 2001; ). Immunomodulatory approaches to augment phagocyte-mediated host defense for treatment of infectious diseases. Semin Respir Infect 16, 11–17.[CrossRef]
    [Google Scholar]
  94. Maher, S. & McClean, S. ( 2006; ). Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem Pharmacol 71, 1289–1298.[CrossRef]
    [Google Scholar]
  95. Marra, A. ( 2004; ). Can virulence factors be viable antibacterial targets? Expert Rev Anti Infect Ther 2, 61–72.[CrossRef]
    [Google Scholar]
  96. Masihi, K. N. ( 2000; ). Immunomodulatory agents for prophylaxis and therapy of infections. Int J Antimicrob Agents 14, 181–191.[CrossRef]
    [Google Scholar]
  97. Matson, J. S., Durick, K. A., Bradley, D. S. & Nilles, M. L. ( 2005; ). Immunization of mice with YscF provides protection from Yersinia pestis infections. BMC Microbiol 5, 38.[CrossRef]
    [Google Scholar]
  98. McGeachie, J. ( 1970; ). An in vitro comparison of colicines K and V and some therapeutic antibiotics. Zentbl Bakteriol Parasitenkd Infektkr Hyg Abt 1 Orig Reihe A 215, 245–251.
    [Google Scholar]
  99. Merx, M. W., Liehn, E. A., Janssens, U., Lutticken, R., Schrader, J., Hanrath, P. & Weber, C. ( 2004; ). HMG-CoA reductase inhibitor simvastatin profoundly improves survival in a murine model of sepsis. Circulation 109, 2560–2565.[CrossRef]
    [Google Scholar]
  100. Meyer, K. F. ( 1970; ). Effectiveness of live or killed plague vaccines in man. Bull W H O 42, 653–666.
    [Google Scholar]
  101. Meyer, K. F., Hightower, J. A. & McCrumb, F. R. ( 1974; ). Plague immunization. VI. Vaccination with the fraction I antigen of Yersinia pestis. J Infect Dis 129 (Suppl.), S41–S45.[CrossRef]
    [Google Scholar]
  102. Miethke, M., Bisseret, P., Beckering, C. L., Vignard, D., Eustache, J. & Marahiel, M. A. ( 2006; ). Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis. FEBS J 273, 409–419.[CrossRef]
    [Google Scholar]
  103. Montgomerie, J. Z., Kalmanson, G. M., Harwick, H. J. & Guze, L. B. ( 1973; ). Relation between bacteriocin production and virulence of Streptococcus faecalis var. liquefaciens. Proc Soc Exp Biol Med 144, 868–870.[CrossRef]
    [Google Scholar]
  104. Morrison, S. L. ( 1992; ). In vitro antibodies: strategies for production and application. Annu Rev Immunol 10, 239–265.[CrossRef]
    [Google Scholar]
  105. Mota-Meira, M., LaPointe, G., Lacroix, C. & Lavoie, M. C. ( 2000; ). MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother 44, 24–29.[CrossRef]
    [Google Scholar]
  106. Mota-Meira, M., Morency, H. & Lavoie, M. C. ( 2005; ). In vivo activity of mutacin B-Ny266. J Antimicrob Chemother 56, 869–871.[CrossRef]
    [Google Scholar]
  107. Motin, V. L., Nakajima, R., Smirnov, G. B. & Brubaker, R. R. ( 1994; ). Passive immunity to yersiniae mediated by anti-recombinant V antigen and protein A-V antigen fusion peptide. Infect Immun 62, 4192–4201.
    [Google Scholar]
  108. Naidu, B. P. B. & Avari, G. R. ( 1932; ). Bacteriophage in the treatment of plague. Ind J Med Res 19, 737–748.
    [Google Scholar]
  109. Nau, R. & Eiffert, H. ( 2002; ). Modulation of release of proinflammatory bacterial compounds by antibacterials: potential impact on course of inflammation and outcome in sepsis and meningitis. Clin Microbiol Rev 15, 95–110.[CrossRef]
    [Google Scholar]
  110. Naumov, A. V. & Samoilova, L. V. ( 1992; ). Manual on Plague Prophylaxis. Saratov, Russia: Russian Research Anti-Plague Institute ‘Microbe’ (in Russian).
  111. Naumov, A. V., Ledvanov, M. Yu. & Drozdov, I. G. ( 1992; ). Plague Immunology. Saratov, Russia: Russian Research Anti-Plague Institute ‘Microbe’ (in Russian).
  112. Navas, E. ( 2002; ). Problems associated with potential massive use of antimicrobial agents as prophylaxis or therapy of a bioterrorist attack. Clin Microbiol Infect 8, 534–539.[CrossRef]
    [Google Scholar]
  113. Nikolaev, N. I. ( 1972; ). Manual on Plague Prophylaxis. Saratov, USSR: All-Union Research Anti-Plague Institute ‘Microbe’ (in Russian).
  114. Nordfelth, R., Kauppi, A. M., Norberg, H. A., Wolf-Watz, H. & Elofsson, M. ( 2005; ). Small-molecule inhibitors specifically targeting type III secretion. Infect Immun 73, 3104–3114.[CrossRef]
    [Google Scholar]
  115. Ofek, I., Hasty, D. L. & Sharon, N. ( 2003; ). Anti-adhesion therapy of bacterial diseases: prospects and problems. FEMS Immunol Med Microbiol 38, 181–191.[CrossRef]
    [Google Scholar]
  116. Oyston, P. C. F., Dorrell, N., Williams, K., Li, S.-R., Green, M., Titball, R. W. & Wren, B. W. ( 2000; ). The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis. Infect Immun 68, 3419–3425.[CrossRef]
    [Google Scholar]
  117. Parkhill, J., Wren, B. W., Thomson, N. R. & 32 other authors ( 2001; ). Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527.[CrossRef]
    [Google Scholar]
  118. Payne, D., Tatham, D., Williamson, E. D. & Titball, R. W. ( 1998; ). The pH 6 antigen of Yersinia pestis binds to β1-linked galactosyl residues in glycosphingolipids. Infect Immun 66, 4545–4548.
    [Google Scholar]
  119. Perry, R. D. & Fetherston, J. D. ( 1997; ). Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10, 35–66.
    [Google Scholar]
  120. Philipovskiy, A. V., Cowan, C., Wulff-Strobel, C. R., Burnett, S. H., Kerschen, E. J., Cohen, D. A., Kaplan, A. M. & Straley, S. C. ( 2005; ). Antibody against V antigen prevents Yop-dependent growth of Yersinia pestis. Infect Immun 73, 1532–1542.[CrossRef]
    [Google Scholar]
  121. Pollitzer, R. ( 1954; ). Plague. W H O Monogr Ser 22, 1–698.
    [Google Scholar]
  122. Porat, R., McCabe, W. R. & Brubaker, R. R. ( 1995; ). Lipopolysaccharide-associated resistance to killing of yersiniae by complement. J Endotoxin Res 2, 91–97.
    [Google Scholar]
  123. Portnoy, D. A. & Falkow, S. ( 1981; ). Virulence-associated plasmids from Yersinia enterocolitica and Yersinia pestis. J Bacteriol 148, 877–883.
    [Google Scholar]
  124. Rackow, E. C. & Astiz, M. E. ( 1991; ). Pathophysiology and treatment of septic shock. JAMA (J Am Med Assoc) 266, 548–554.[CrossRef]
    [Google Scholar]
  125. Raoult, D., Aboudharam, G., Crubezy, E., Larrouy, G., Ludes, B. & Drancourt, M. ( 2000; ). Molecular indentification by ‘suicide PCR’ of Yersinia pestis as the agent of medieval Black Death. Proc Natl Acad Sci U S A 97, 12800–12803.[CrossRef]
    [Google Scholar]
  126. Riley, M. A. & Wertz, J. E. ( 2002; ). Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56, 117–137.[CrossRef]
    [Google Scholar]
  127. Robinson, V. L., Oyston, P. C. & Titball, R. W. ( 2005; ). A dam mutant of Yersinia pestis is attenuated and induces protection against plague. FEMS Microbiol Lett 252, 251–256.[CrossRef]
    [Google Scholar]
  128. Roggenkamp, A., Geiger, A. M., Leitritz, L., Kessler, A. & Heesemann, J. ( 1997; ). Passive immunity to infection with Yersinia spp. mediated by anti-recombinant V antigen is dependent on polymorphism of V antigen. Infect Immun 65, 446–451.
    [Google Scholar]
  129. Rojas, C. M., Ham, J. H., Deng, W. L., Doyle, J. J. & Collmer, A. ( 2002; ). HecA, a member of a class of adhesins produced by diverse pathogenic bacteria, contributes to the attachment, aggregation, epidermal cell killing, and virulence phenotypes of Erwinia chrysanthemi EC16 on Nicotiana clevelandii seedlings. Proc Natl Acad Sci U S A 99, 13142–13147.[CrossRef]
    [Google Scholar]
  130. Rudnev, G. P. ( 1940; ). Clinical Picture of Plague. Moscow, Leningrad, Russia: Medgiz (in Russian).
  131. Russell, P., Eley, S. M., Green, M. & 8 other authors ( 1998; ). Efficacy of doxycycline and ciprofloxacin against experimental Yersinia pestis infection. J Antimicrob Chemother 41, 301–305.[CrossRef]
    [Google Scholar]
  132. Ryan, M. P., Flynn, J., Hill, C., Ross, R. P. & Meaney, W. J. ( 1999; ). The natural food grade inhibitor, lacticin 3147, reduced the incidence of mastitis after experimental challenge with Streptococcus dysgalactiae in nonlactating dairy cows. J Dairy Sci 82, 2625–2631.[CrossRef]
    [Google Scholar]
  133. Ryzhko, I. V., Samokhodkina, E. D., Tsuraeva, R. I., Shcherbaniuk, A. I. & Tsetskhladze, N. S. ( 1998; ). Characteristics of etiotropic therapy of plague infection induced by atypical strains of F1 phenotype plague microbe. Antibiot Khimioter 43, 24–28 (in Russian).
    [Google Scholar]
  134. Sabhnani, L. & Rao, D. N. ( 2000; ). Identification of immunodominant epitope of F1 antigen of Yersinia pestis. FEMS Immunol Med Microbiol 27, 155–162.[CrossRef]
    [Google Scholar]
  135. Sabhnani, L., Manocha, M., Sridevi, K., Shashikiran, D., Rayanade, R. & Rao, D. N. ( 2003; ). Developing subunit immunogens using B and T cell epitopes and their constructs derived from the F1 antigen of Yersinia pestis using novel delivery vehicles. FEMS Immunol Med Microbiol 38, 215–229.[CrossRef]
    [Google Scholar]
  136. Simpson, W. J., Thomas, R. E. & Schwan, T. G. ( 1990; ). Recombinant capsular antigen (fraction 1) from Yersinia pestis induces a protective antibody response in BALB/c mice. Am J Trop Med Hyg 43, 389–396.
    [Google Scholar]
  137. Sing, A., Rost, D., Tvardovaskaia, N., Roggenkamp, A., Wiedemann, A., Kirschning, C. J., Aepfelbacher, M. & Heesemann, J. ( 2002; ). Yersinia V-antigen exploits toll-like receptor 2 and CD14 for interleukin 10-mediated immunosuppression. J Exp Med 196, 1017–1024.[CrossRef]
    [Google Scholar]
  138. Skurnik, M. & Strauch, E. ( 2006; ). Phage therapy: facts and fiction. Int J Med Microbiol 296, 5–14.
    [Google Scholar]
  139. Smith, H. W. ( 1974; ). A search for transmissible pathogenic characters in invasive strains of Escherichia coli: the discovery of a plasmid-controlled toxin and a plasmid-controlled lethal character closely associated, or identical, with colicin V. J Gen Microbiol 83, 95–111.[CrossRef]
    [Google Scholar]
  140. Sodhi, A., Sharma, R. K., Batra, H. V. & Tuteja, U. ( 2004; ). Mechanism of rLcrV and rYopB mediated immunosuppression in murine peritoneal macrophages. Mol Immunol 41, 767–774.[CrossRef]
    [Google Scholar]
  141. Stern, N. J., Svetoch, E. A., Eruslanov, B. V., Kovalev, Y. N., Volodina, L. I., Perelygin, V. V., Mitsevich, E. V., Mitsevich, I. P. & Levchuk, V. P. ( 2005; ). Paenibacillus polymyxa purified bacteriocin to control Campylobacter jejuni in chickens. J Food Prot 68, 1450–1453.
    [Google Scholar]
  142. Steward, J., Lever, M. S., Russell, P., Beedham, R. J., Staga, A. J., Taylor, R. R. & Brooks, T. J. G. ( 2004; ). Efficacy of the latest fluoroquinolones against experimental Yersinia pestis. Int J Antimicrob Agents 24, 609–612.[CrossRef]
    [Google Scholar]
  143. Straley, S. C. ( 1993; ). Adhesins in Yersinia pestis. Trends Microbiol 1, 285–286.[CrossRef]
    [Google Scholar]
  144. Suga, H. & Smith, K. M. ( 2003; ). Molecular mechanisms of bacterial quorum sensing as a new drug target. Curr Opin Chem Biol 7, 586–591.[CrossRef]
    [Google Scholar]
  145. Sulakvelidze, A. ( 2005; ). Phage therapy: an attractive option for dealing with antibiotic-resistant bacterial infections. Drug Discov Today 10, 807–809.[CrossRef]
    [Google Scholar]
  146. Summers, W. C. ( 1999; ). Felix d'Herelle and the Origins of Molecular Biology. New Haven, CT: Yale University Press.
  147. Summers, W. C. ( 2001; ). Bacteriophage therapy. Annu Rev Microbiol 55, 437–451.[CrossRef]
    [Google Scholar]
  148. Tagg, J. R. & McGiven, A. R. ( 1972; ). Some possible autoimmune mechanisms in rheumatic carditis. Lancet 2, 686–688.
    [Google Scholar]
  149. Tagg, J. R., Dajani, A. S. & Wannamaker, L. W. ( 1976; ). Bacteriocins of Gram-positive bacteria. Bacteriol Rev 40, 722–756.
    [Google Scholar]
  150. Thomas, R. & Brooks, T. ( 2004; ). Common oligosaccharide moieties inhibit the adherence of typical and atypical respiratory pathogens. J Med Microbiol 53, 833–840.[CrossRef]
    [Google Scholar]
  151. Thomas, R. & Brooks, T. ( 2006; ). Attachment of Yersinia pestis to human respiratory cell lines is inhibited by certain oligosaccharides. J Med Microbiol 55, 309–315.[CrossRef]
    [Google Scholar]
  152. Turnowsky, F., Drews, J., Eich, F. & Hogenauer, G. ( 1973; ). In vitro inactivation of ascites ribosomes by colicin E3. Biochem Biophys Res Commun 52, 327–334.[CrossRef]
    [Google Scholar]
  153. Une, T. & Brubaker, R. R. ( 1984; ). Roles of V antigen in promoting virulence and immunity in yersiniae. J Immunol 133, 2226–2230.
    [Google Scholar]
  154. Van Amersfoort, E. S., Van Berkel, T. J. & Kuiper, J. ( 2003; ). Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin Microbiol Rev 16, 379–414.[CrossRef]
    [Google Scholar]
  155. Viboud, G. I. & Bliska, J. B. ( 2005; ). Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59, 69–89.[CrossRef]
    [Google Scholar]
  156. Vincent, J.-L., Roman, A. & Kahn, R. J. ( 1990; ). Dobutamine administration in septic shock: addition to a standard protocol. Crit Care Med 18, 689–693.[CrossRef]
    [Google Scholar]
  157. Weeks, S., Hill, J., Friedlander, A. & Welkos, S. ( 2002; ). Anti-V antigen antibody protects macrophages from Yersinia pestis-induced cell death and promotes phagocytosis. Microb Pathog 32, 227–237.[CrossRef]
    [Google Scholar]
  158. Welty, T. K., Grabman, J., Kompare, E., Wood, G., Welty, E., Van Duzen, J., Rudd, P. & Poland, J. ( 1985; ). Nineteen cases of plague in Arizona: a spectrum including ecthyma gangrenosum due to plague and plague in pregnancy. West J Med 142, 641–646.
    [Google Scholar]
  159. Wheeler, A. P. & Bernard, G. R. ( 1999; ). Treating patients with severe sepsis. N Engl J Med 340, 207–214.[CrossRef]
    [Google Scholar]
  160. Williamson, E. D. ( 2001; ). Plague vaccine research and development. J Appl Microbiol 91, 606–608.[CrossRef]
    [Google Scholar]
  161. Williamson, E. D., Flick-Smith, H. C., Lebutt, C. & 7 other authors ( 2005; ). Human immune response to a plague vaccine comprising recombinant F1 and V antigens. Infect Immun 73, 3598–3608.[CrossRef]
    [Google Scholar]
  162. Winfield, M. D., Latifi, T. & Groisman, E. A. ( 2005; ). Transcriptional regulation of the 4-amino-4-deoxy-l-arabinose biosynthetic genes in Yersinia pestis. J Biol Chem 280, 14765–14772.[CrossRef]
    [Google Scholar]
  163. Winslow, E. J., Loeb, H. S., Rahimtoola, S. H., Kamath, S. & Gunnar, R. M. ( 1973; ). Hemodynamic studies and results of therapy in 50 patients with bacteremic shock. Am J Med 54, 421–432.[CrossRef]
    [Google Scholar]
  164. Wong, J. D., Baresh, J. R., Sandfort, R. F. & Janda, J. M. ( 2000; ). Susceptibilities of Yersinia pestis strains to 12 antimicrobial agents. Antimicrob Agents Chemother 44, 1995–1996.[CrossRef]
    [Google Scholar]
  165. WHO ( 1970; ). Health Aspects of Chemical and Biological Weapons: Report of a WHO Group of Consultants. Geneva: World Health Organization.
  166. WHO Expert Committee on Plague ( 1970; ). Fourth report. World Health Organ Tech Rep Ser 447, 1–25.
    [Google Scholar]
  167. Xie, J., Comeau, A. B. & Seto, C. T. ( 2004; ). Squaric acids: a new motif for designing inhibitors of protein tyrosine phosphatases. Org Lett 6, 83–86.[CrossRef]
    [Google Scholar]
  168. Yersin, A. ( 1894; ). La peste bubonique à Hong-Kong. Ann Inst Pasteur 8, 662–667 (in French).
    [Google Scholar]
  169. Yersin, A. ( 1897; ). Sur la peste bubonique (sérothérapie). Ann Inst Pasteur 11, 81–93 (in French).
    [Google Scholar]
  170. Yersin, A., Calmette, A. & Borrel, A. ( 1895; ). La peste bubonique (deuxiéme note). Ann Inst Pasteur 9, 589–592 (in French).
    [Google Scholar]
  171. Young, R. ( 1992; ). Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56, 430–481.
    [Google Scholar]
  172. Zav'yalov, V., Denesyuk, A., Zav'yalova, G. & Korpela, T. ( 1995; ). Molecular modeling of the steric structure of the envelope F1 antigen of Yersinia pestis. Immunol Lett 45, 19–22.[CrossRef]
    [Google Scholar]
  173. Zav'yalov, V. P., Abramov, V. M., Cherepanov, P. G., Spirina, G. V., Chernovskaya, T. V., Vasiliev, A. M. & Zav'yalov, G. A. ( 1996; ). pH6 antigen (PsaA protein) of Yersinia pestis, a novel bacterial Fc-receptor. FEMS Immunol Med Microbiol 14, 53–57.[CrossRef]
    [Google Scholar]
  174. Zhemchugov, V. Ye. ( 2004; ). How We Developed Chemical Vaccines: Notes about Today's ‘Microbe Hunters’. Moscow: Nauka (in Russian).
  175. Zietz, B. P. & Dunkelberg, H. ( 2004; ). The history of the plague and the research on the causative agent Yersinia pestis. Int J Hyg Environ Health 207, 165–178.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46697-0
Loading
/content/journal/jmm/10.1099/jmm.0.46697-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error