1887

Abstract

The Matlab variants of O1, defined as hybrids between the classical and El Tor biotypes, were first isolated from hospitalized patients with acute secretory diarrhoea in Matlab, a rural area of Bangladesh. These variants could not be categorized as classical or El Tor biotypes by phenotypic and genotypic tests, and had representative traits of both the biotypes. A number of virulence-associated genes and/or gene clusters were screened by PCR and DNA sequencing. El Tor-specific gene clusters, seventh-pandemic islands (VSP)-I and -II and repeat toxin (RTX) were present in the genome of these variants, indicating their El Tor lineage, whereas the nucleotide-sequence-derived CtxB amino acid sequence of these strains grouped them under the classical biotype. Matlab variants possessed all the necessary genes to initiate pandemics. The genetic relatedness of Matlab variants to the strains recently isolated in Mozambique is another important observation of this study, which underscores the epidemiological significance of Matlab variants.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46689-0
2006-11-01
2020-08-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/11/1563.html?itemId=/content/journal/jmm/10.1099/jmm.0.46689-0&mimeType=html&fmt=ahah

References

  1. Albert M. J., Siddique A. K., Islam M. S., Faruque A. S. G., Ansaruzzaman M., Faruque S. M., Sack R. B. 1993; Large outbreak of clinical cholera due to Vibrio cholerae non-O1 in Bangladesh. Lancet 341:704
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Ansaruzzaman M., Bhuiyan N. A., Nair G. B., Sack D. A., Lucas M., Deen J. L., Ampuero J., Chaignat C. L. & The Mozambique Cholera Vaccine Demonstration Project Coordination Group; 2004; Cholera in Mozambique, variant of Vibrio cholerae . Emerg Infect Dis 10:2057–2059 [CrossRef]
    [Google Scholar]
  4. Barrett T. J., Blake P. A. 1981; Epidemiological usefulness of changes in hemolytic activity of Vibrio cholerae biotype El Tor during the seventh pandemic. J Clin Microbiol 13:126–129
    [Google Scholar]
  5. Brickman T. J., Boesman-Finkelstein M., Finkelstein R. A., McIntosh M. A. 1990; Molecular cloning and nucleotide sequence analysis of cholera toxin genes of the CtxA Vibrio cholerae strains Texas Star-SR. Infect Immun 58:4142–4144
    [Google Scholar]
  6. Brown M. H., Manning P. A. 1985; Haemolysin genes of Vibrio cholerae : presence of homologous DNA in non-haemolytic O1 and haemolytic non-O1 strains. FEMS Microbiol Lett 30:197–201 [CrossRef]
    [Google Scholar]
  7. Chow K. H., Ng T. K., Yuen K. Y., Yam W. C. 2001; Detection of RTX toxin gene in Vibrio cholerae by PCR. J Clin Microbiol 39:2594–2597 [CrossRef]
    [Google Scholar]
  8. Davis B. M., Waldor M. K. 2003; Filamentous phages linked to virulence of Vibrio cholerae . Curr Opin Microbiol 6:35–42 [CrossRef]
    [Google Scholar]
  9. Davis M. B., Moyer K. E., Boyd E. F., Waldor M. K. 2000; CTX prophages in classical biotype Vibrio cholerae : functional phage genes but dysfunctional phage genomes. J Bacteriol 182:6992–6998 [CrossRef]
    [Google Scholar]
  10. DiRita V. J., Neely M., Taylor R. K., Bruss P. M. 1996; Differential expression of ToxR regulon in classical and El Tor biotypes of Vibrio cholerae is due to biotype-specific control over ToxT expression. Proc Natl Acad Sci U S A 93:7991–7995 [CrossRef]
    [Google Scholar]
  11. Dziejman M., Balon E., Boyd D., Fraser C. M., Heidelberg J. F., Mekalanos J. J. 2002; Comparative genomic analysis of Vibrio cholerae : genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci U S A 99:1556–1561 [CrossRef]
    [Google Scholar]
  12. Faruque S. M., Albert M. J., Mekalanos J. J. 1998; Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae . Microbiol Mol Biol Rev 62:1301–1314
    [Google Scholar]
  13. Faruque S. M., Asadulghani Kamruzzaman M., Nandi R. K., Ghosh A. N., Nair G. B., Mekalanos J. J., Sack D. A. 2002; RS1 element of Vibrio cholerae can propagate horizontally as a filamentous phage exploiting the morphogenesis genes of CTXΦ. Infect Immun 70:163–170 [CrossRef]
    [Google Scholar]
  14. Heidelberg J. F., Eisen J. A., Nelson W. C. & 29 other authors; 2000; DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae . Nature 406:477–483 [CrossRef]
    [Google Scholar]
  15. Heilpern A. J., Waldor M. K. 2003; pIIICTX, a predicted CTXΦ minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae . J Bacteriol 185:1037–1044 [CrossRef]
    [Google Scholar]
  16. Herrington D. A., Hall R. H., Losonsky G., Mekalanos J. J., Taylor R. K., Levine M. M. 1988; Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168:1487–1492
    [Google Scholar]
  17. Jonson G., Holmgren J., Svennerholm A. M. 1991; Identification of a mannose-binding pilus on Vibrio cholerae El Tor. Microb Pathog 11:433–441 [CrossRef]
    [Google Scholar]
  18. Kaper J. B., Bradford H. B., Roberts N. C., Falkow S. 1982; Molecular epidemiology of Vibrio cholerae in the U. S. Gulf Coast. J Clin Microbiol 16:129–134
    [Google Scholar]
  19. Kaper J. B., Morris J. G. Jr, Levine M. M. 1995; Cholera. Clin Microbiol Rev 8:48–86
    [Google Scholar]
  20. Karalois D. K. S., Lan R., Reeves P. R. 1995; The sixth and seventh cholera pandemics are due to independent clones separately derived from environmental, nontoxigenic, non-O1 Vibrio cholerae . J Bacteriol 177:3191–3198
    [Google Scholar]
  21. Kimsey H. H., Nair G. B., Ghosh A., Waldor M. K. 1998; Diverse CTXΦ and evolution of new pathogenic Vibrio cholerae . Lancet 352:457–458
    [Google Scholar]
  22. Kovach M. E., Shaffer M. D., Peterson K. M. 1996; A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae . Microbiology 142:2165–2174 [CrossRef]
    [Google Scholar]
  23. Lee J. H., Han K. H., Choi S. Y. & 11 other authors; 2006; Multilocus sequence typing (MLST) analysis of Vibrio cholerae O1 El Tor isolates from Mozambique that harbour the classical CTX prophage. J Med Microbiol 55:165–170 [CrossRef]
    [Google Scholar]
  24. Lin W., Fullner K. J., Clayton R., Sexton J. A., Rogers M. B., Calia K. E., Calderwood S. B., Fraser C., Mekalanos J. J. 1999; Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A 96:1071–1076 [CrossRef]
    [Google Scholar]
  25. Mazel D., Dychinco B., Webb V. A., Davies J. 1998; A distinctive class of integron in the Vibrio cholerae genome. Science 280:605–608 [CrossRef]
    [Google Scholar]
  26. Mekalanos J. J., Swartz D. J., Person G. D. N., Harford N., Groyne F., deWilde M. 1993; Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 306:551–557
    [Google Scholar]
  27. Mitra S. N., Mukhopadhay R., Ghosh A. N., Ghosh R. K. 2000; Conversion of Vibrio El Tor MAK757 to classical biotype: role of phage PS166. Virology 273:36–43 [CrossRef]
    [Google Scholar]
  28. Nair G. B., Faruque S. M., Bhuiyan N. A., Kamruzzaman M., Siddique A. K., Sack D. A. 2002; New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol 40:3296–3299 [CrossRef]
    [Google Scholar]
  29. Nusrin S., Khan G. Y., Bhuiyan N. A. 9 other authors 2004; Diverse CTX phages among toxigenic Vibrio cholerae O1 and O139 strains isolated between 1994 and 2002 in an area where cholera is endemic in Bangladesh. J Clin Microbiol 42:5854–5856 [CrossRef]
    [Google Scholar]
  30. Olsvik Ø., Wahlberg J., Petterson B., Uhlen M., Popovic T., Wachsmuth I. K., Fields P. I. 1993; Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae O1 strains. J Clin Microbiol 31:22–25
    [Google Scholar]
  31. O'Shea A. Y., Reen J. F., Quirke A. M., Boyd E. F. 2004; Evolutionary genetic analysis of the emergence of epidemic Vibrio cholerae isolates on the basis of comparative nucleotide sequence analysis and multilocus virulence gene profiles. J Clin Microbiol 42:4657–4671 [CrossRef]
    [Google Scholar]
  32. Recchia G. D., Hall M. R. 1997; Origins of the mobile gene cassettes found in integrons. Trends Microbiol 5:389–394 [CrossRef]
    [Google Scholar]
  33. Rivera I. N., Chun J., Huq A., Sack R. B., Colwell R. R. 2001; Genotypes associated with virulence in environmental isolates of Vibrio cholerae . Appl Environ Microbiol 67:2421–2429 [CrossRef]
    [Google Scholar]
  34. Rubin E. J., Lin W., Mekalanos J. J., Waldor M. K. 1998; Replication and integration of a Vibrio cholerae cryptic plasmid linked to the CTX prophage. Mol Microbiol 28:1247–1254 [CrossRef]
    [Google Scholar]
  35. Safa A., Bhuiyan N. A., Alam M., Sack D. A., Nair G. B. 2005; Genomic relatedness of the new Matlab variants of Vibrio cholerae O1 to the classical and El Tor biotypes as determined by pulsed-field gel electrophoresis. J Clin Microbiol 43:1401–1404 [CrossRef]
    [Google Scholar]
  36. Samadi A. R., Shahid N., Eusuf A., Yunus M., Huq M. I., Khan M. U., Rahman A. S. M. M., Faruque A. S. G. 1983; Classical Vibrio cholerae biotype displaces El Tor in Bangladesh. Lancet 1:805–807
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Shimada T., Nair G. B., Deb B. C., Albert M. J., Sack R. B., Takeda Y. 1993; Outbreak of Vibrio cholerae non-O1 in India and Bangladesh. Lancet 341:1347 [CrossRef]
    [Google Scholar]
  39. Waldor M. K., Rubin E. J., Pearson G. D. N., Kimsey H., Mekalanos J. J. 1997; Regulation, replication, and integration functions of the Vibrio cholerae CTXΦ are encoded by region RS2. Mol Microbiol 24:917–926 [CrossRef]
    [Google Scholar]
  40. WHO 1987 Manual for Laboratory Investigations of Acute Enteric Infections Geneva: World Health Organization;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46689-0
Loading
/content/journal/jmm/10.1099/jmm.0.46689-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error