1887

Abstract

is the causative agent of human and animal glanders and is a category B biothreat agent. Rapid diagnosis of and immediate prophylactic treatment are essential for patient survival. The majority of current bacteriological and immunological techniques for identifying from clinical samples are time-consuming, and cross-reactivity with closely related organisms (i.e. ) is a problem. In this investigation, two -specific real-time PCR assays targeting the gene ( ntracellular otility A; BMAA0749), which encodes a protein involved in actin polymerization, were developed. The PCR primer and probe sets were tested for specificity against a collection of and isolates obtained from numerous clinical and environmental ( only) sources. The assays were also tested for cross-reactivity using template DNA from 14 closely related species. The relative limit of detection for the assays was found to be 1 pg or 424 genome equivalents. The authors also analysed the applicability of assays to detect within infected BALB/c mouse tissues. Beginning 1 h post aerosol exposure, was successfully identified within the lungs, and starting at 24 h post exposure, in the spleen and liver. Surprisingly, was not detected in the blood of acutely infected animals. This investigation provides two real-time PCR assays for the rapid and specific identification of .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46350-0
2006-05-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/5/551.html?itemId=/content/journal/jmm/10.1099/jmm.0.46350-0&mimeType=html&fmt=ahah

References

  1. Antonov, V. A. & Iliukhin, V. I. ( 2005; ). Molecular-genetic approaches to diagnosis and intraspecific typing of causative agents of glanders and melioidosis. Mol Gen Mikrobiol Virusol 2, 3–9 (in Russian).
    [Google Scholar]
  2. Bauernfeind, A., Roller, C., Meyer, D., Jungwirth, R. & Schneider, I. ( 1998; ). Molecular procedure for rapid detection of Burkholderia mallei and Burkholderia pseudomallei. J Clin Microbiol 36, 2737–2741.
    [Google Scholar]
  3. Brett, P. J., DeShazer, D. & Woods, D. E. ( 1997; ). Characterization of Burkholderia pseudomallei and Burkholderia pseudomallei-like strains. Epidemiol Infect 118, 137–148.[CrossRef]
    [Google Scholar]
  4. Brett, P. J., DeShazer, D. & Woods, D. E. ( 1998; ). Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 48, 317–320.[CrossRef]
    [Google Scholar]
  5. Bricker, B. J. & Halling, S. M. ( 1994; ). Differentiation of Brucella abortus bv. 1, 2, and 4, Brucella melitensis, Brucella ovis, and Brucella suis bv. 1 by PCR. J Clin Microbiol 32, 2660–2666.
    [Google Scholar]
  6. Coyne, S. R., Craw, P. D., Norwood, D. A. & Ulrich, M. P. ( 2004; ). Comparative analysis of the Schleicher and Schuell IsoCode Stix DNA isolation device and the Qiagen QIAamp DNA Mini Kit. J Clin Microbiol 42, 4859–4862.[CrossRef]
    [Google Scholar]
  7. DeShazer, D. & Waag, D. ( 2004; ). Glanders: new insights into an old disease. In Biological Weapons Defense: Infectious Diseases and Counterbioterrorism, pp. 209–237. Edited by L. Lindler, F. Lebeda & G. W. Korch. Totowa, NJ: Humana Press.
  8. Fritz, D. L., Vogel, P., Brown, D. R., Deshazer, D. & Waag, D. M. ( 2000; ). Mouse model of sublethal and lethal intraperitoneal glanders (Burkholderia mallei). Vet Pathol 37, 626–636.[CrossRef]
    [Google Scholar]
  9. Gee, J. E., Sacchi, C. T., Glass, M. B., De, B. K., Weyant, R. S., Levett, P. N., Whitney, A. M., Hoffmaster, A. R. & Popovic, T. ( 2003; ). Use of 16S rRNA gene sequencing for rapid identification and differentiation of Burkholderia pseudomallei and B. mallei. J Clin Microbiol 41, 4647–4654.[CrossRef]
    [Google Scholar]
  10. Glass, M. B. & Popovic, T. ( 2005; ). Preliminary evaluation of the API 20NE and RapID NF plus systems for rapid identification of Burkholderia pseudomallei and B. mallei. J Clin Microbiol 43, 479–483.[CrossRef]
    [Google Scholar]
  11. Godoy, D., Randle, G., Simpson, A. J., Aanensen, D. M., Pitt, T. L., Kinoshita, R. & Spratt, B. G. ( 2003; ). Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41, 2068–2079.[CrossRef]
    [Google Scholar]
  12. Hagen, R. M., Gauthier, Y. P., Sprague, L. D., Vidal, D. R., Zysk, G., Finke, E. J. & Neubauer, H. ( 2002; ). Strategies for PCR based detection of Burkholderia pseudomallei DNA in paraffin wax embedded tissues. Mol Pathol 55, 398–400.[CrossRef]
    [Google Scholar]
  13. Hartman, L. J., Coyne, S. R. & Norwood, D. A. ( 2005; ). Development of a novel internal positive control for Taqman based assays. Mol Cell Probes 19, 51–59.[CrossRef]
    [Google Scholar]
  14. Holden, M. T., Titball, R. W., Peacock, S. J. & 45 other authors ( 2004; ). Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 101, 14240–14245.[CrossRef]
    [Google Scholar]
  15. Howe, C. & Miller, R. ( 1947; ). Human glanders: report of six cases. Ann Intern Med 26, 93–115.[CrossRef]
    [Google Scholar]
  16. Hunter, D. ( 1936; ). Saints and martyrs. Lancet 231, 1131–1134.
    [Google Scholar]
  17. Inglis, T. J., Chiang, D., Lee, G. S. & Chor-Kiang, L. ( 1998; ). Potential misidentification of Burkholderia pseudomallei by API 20NE. Pathology 30, 62–64.[CrossRef]
    [Google Scholar]
  18. Lee, M. A., Wang, D. & Yap, E. H. ( 2005; ). Detection and differentiation of Burkholderia pseudomallei, Burkholderia mallei and Burkholderia thailandensis by multiplex PCR. FEMS Immunol Med Microbiol 43, 413–417.[CrossRef]
    [Google Scholar]
  19. Nierman, W. C., DeShazer, D., Kim, H. S. & 30 other authors ( 2004; ). Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 101, 14246–14251.[CrossRef]
    [Google Scholar]
  20. Sprague, L. D., Zysk, G., Hagen, R. M., Meyer, H., Ellis, J., Anuntagool, N., Gauthier, Y. & Neubauer, H. ( 2002; ). A possible pitfall in the identification of Burkholderia mallei using molecular identification systems based on the sequence of the flagellin fliC gene. FEMS Immunol Med Microbiol 34, 231–236.[CrossRef]
    [Google Scholar]
  21. Srinivasan, A., Kraus, C. N., DeShazer, D., Becker, P. M., Dick, J. D., Spacek, L., Bartlett, J. G., Byrne, W. R. & Thomas, D. L. ( 2001; ). Glanders in a military research microbiologist. N Engl J Med 345, 256–258.[CrossRef]
    [Google Scholar]
  22. Steele, J. H. ( 1979; ). Glanders. In CRC Handbook Series in Zoonoses, pp. 339–362. Boca Raton, FL: CRL Press.
  23. Stevens, J., Ulrich, R., Taylor, L., Wood, M., DeShazer, D., Stevens, M. & Galyov, E. ( 2005a; ). Actin-binding proteins from Burkholderia mallei and B. thailandensis can functionally compensate for the actin-based motility defect of a B. pseudomallei bimA mutant. J Bacteriol, (in press).
    [Google Scholar]
  24. Stevens, M. P., Stevens, J. M., Jeng, R. L., Taylor, L. A., Wood, M. W., Hawes, P., Monaghan, P., Welch, M. D. & Galyov, E. E. ( 2005b; ). Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol Microbiol 56, 40–53.[CrossRef]
    [Google Scholar]
  25. Tanpiboonsak, S., Paemanee, A., Bunyarataphan, S. & Tungpradabkul, S. ( 2004; ). PCR-RFLP based differentiation of Burkholderia mallei and Burkholderia pseudomallei. Mol Cell Probes 18, 97–101.[CrossRef]
    [Google Scholar]
  26. Thibault, F. M., Valade, E. & Vidal, D. R. ( 2004; ). Identification and discrimination of Burkholderia pseudomallei, B. mallei, and B. thailandensis by real-time PCR targeting type III secretion system genes. J Clin Microbiol 42, 5871–5874.[CrossRef]
    [Google Scholar]
  27. Tomaso, H., Scholz, H. C., Al Dahouk, S., Pitt, T. L., Treu, T. M. & Neubauer, H. ( 2004; ). Development of 5′ nuclease real-time PCR assays for the rapid identification of the Burkholderia mallei//Burkholderia pseudomallei complex. Diagn Mol Pathol 13, 247–253.[CrossRef]
    [Google Scholar]
  28. Tomaso, H., Pitt, T. L., Landt, O., Al Dahouk, S., Scholz, H. C., Reisinger, E. C., Sprague, L. D., Rathmann, I. & Neubauer, H. ( 2005; ). Rapid presumptive identification of Burkholderia pseudomallei with real-time PCR assays using fluorescent hybridization probes. Mol Cell Probes 19, 9–20.[CrossRef]
    [Google Scholar]
  29. Tyler, S. D., Strathdee, C. A., Rozee, K. R. & Johnson, W. M. ( 1995; ). Oligonucleotide primers designed to differentiate pathogenic pseudomonads on the basis of the sequencing of genes coding for 16S–23S rRNA internal transcribed spacers. Clin Diagn Lab Immunol 2, 448–453.
    [Google Scholar]
  30. Ulrich, R. L., Ulrich, M. P., Schell, M. A., Kim, S. & DeShazer, D. ( 2006; ). Development of a PCR assay for the specific identification of Burkholderia mallei and differentiation from Burkholderia pseudomallei and other closely related Burkholderiaceae. Diagn Microbiol Infect Dis (in press).
    [Google Scholar]
  31. U'Ren, J. M., Van Ert, M. N., Schupp, J. M., Easterday, W. R., Simonson, T. S., Okinaka, R. T., Pearson, T. & Keim, P. ( 2005; ). Use of a real-time PCR TaqMan assay for rapid identification and differentiation of Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 43, 5771–5774.[CrossRef]
    [Google Scholar]
  32. Woods, D. E., Jeddeloh, J. A., Fritz, D. L. & DeShazer, D. ( 2002; ). Burkholderia thailandensis E125 harbors a temperate bacteriophage specific for Burkholderia mallei. J Bacteriol 184, 4003–4017.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46350-0
Loading
/content/journal/jmm/10.1099/jmm.0.46350-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error