1887

Abstract

Biological agents and ionizing radiation lead to more severe clinical outcomes than either insult alone. This study investigated the survival of non-irradiated and Co-gamma-irradiated mice given therapy for inhalation anthrax with ciprofloxacin (CIP) or a clinically relevant mixture of clarithromycin (CLR) and its major human microbiologically important metabolite 14-hydroxy clarithromycin (14-OH CLR). All B6D2F1/J 10-week-old female mice were inoculated intratracheally with 3 × 10 c.f.u. of Sterne spores 4 days after the non-lethal 7 Gy dose of Co gamma radiation. Twenty-one days of treatment with CLR/14-OH CLR, 150 mg kg twice daily, or CIP, 16.5 mg kg twice daily, began 24 h after inoculation. Pharmacokinetics indicate that the area under the curve (AUC) for 14-OH CLR on the concentration-versus-time graph was slightly higher in gamma-irradiated than non-irradiated animals. Neither drug was able to increase survival in gamma-irradiated animals. CIP and CLR/14-OH CLR therapies in non-irradiated animals increased survival from 49 % (17/35 mice) in buffer-treated animals to 94 % (33/35) and 100 %, respectively ( < 0.001). Sterne only was isolated from 25–50 % of treated mice with or without irradiation. Mixed infections with Sterne were present in 50–71 % of gamma-irradiated mice but only in 5–10 % of mice without irradiation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46166-0
2005-12-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/12/JM541207.html?itemId=/content/journal/jmm/10.1099/jmm.0.46166-0&mimeType=html&fmt=ahah

References

  1. Alper, T. ( 1979;). Cellular Radiobiology. New York: Cambridge University Press.
  2. Anzueto, A. & Norris, S. ( 2004;). Clarithromycin in 2003: sustained efficacy and safety in an era of rising antibiotic resistance. Int J Antimicrob Agents 24, 1–17.
    [Google Scholar]
  3. Athamna, A., Massalha, M., Athamna, M., Nura, A., Medlej, B., Ofek, I., Bast, D. & Rubinstein, E. ( 2004;). In vitro susceptibility of Bacillus anthracis to various antibacterial agents and their time-kill activity. J Antimicrob Chemother 53, 247–251.[CrossRef]
    [Google Scholar]
  4. Bartlett, J. G. ( 2002;). Pocket Book of Infectious Disease Therapy, 12th edn. Philadephia, PA: Lippincott Williams & Wilkins.
  5. Benavides, S. & Nahata, M. C. ( 2002;). Anthrax: safe treatment for children. Ann Pharmacother 36, 334–337.[CrossRef]
    [Google Scholar]
  6. Brook, I. & Elliott, T. B. ( 1991;). Quinolone therapy in the prevention of mortality after irradiation. Radiat Res 128, 100–103.[CrossRef]
    [Google Scholar]
  7. Brook, I. & Ledney, G. D. ( 1992;). Quinolone therapy in the management of infection after irradiation. Crit Rev Microbiol 18, 235–246.[CrossRef]
    [Google Scholar]
  8. Brook, I., Elliott, T. B., Harding, R. A., Bouhaouala, S. S., Peacock, S. J., Ledney, G. D. & Knudson, G. B. ( 2001a;). Susceptibility of irradiated mice to Bacillus anthracis Sterne by the intratracheal route of infection. J Med Microbiol 50, 702–711.
    [Google Scholar]
  9. Brook, I., Elliott, T. B., Pryor, H. I., Sautter, T. E., Gnade, B. T., Thakar, J. H. & Knudson, G. B. ( 2001b;). In vitro resistance of Bacillus anthracis Sterne to doxycycline, macrolides and quinolones. Int J Antimicrob Agents 18, 559–562.[CrossRef]
    [Google Scholar]
  10. Centers for Disease Control and Prevention ( 2001;). Update: investigation of bioterrorism-related anthrax and interim guidelines for exposure management and antimicrobial therapy, October 2001. MMWR Morb Mortal Wkly Rep 50, 909–919.
    [Google Scholar]
  11. Christopher, G. W., Cieslak, T. J., Pavlin, J. A. & Eitzen, E. M., Jr ( 1997;). Biological warfare: a historical perspective. JAMA 278, 412–417.[CrossRef]
    [Google Scholar]
  12. Dalhoff, A. & Schmitz, F. J. ( 2003;). In vitro antibacterial activity and pharmacodynamics of new quinolones. Eur J Clin Microbiol Infect Dis 22, 203–221.
    [Google Scholar]
  13. Dewan, P. K., Fry, A. M., Laserson, K. & 16 other authors ( 2002;). Inhalational anthrax outbreak among postal workers, Washington, D.C., 2001. Emerg Infect Dis 8, 1066–1072.[CrossRef]
    [Google Scholar]
  14. Efron, B. & Tibshirani, R. J. ( 1993;). More complicated data structures. In An Introduction to the Bootstrap, pp. 86–103. Boca Raton: Chapman & Hall.
  15. Elliott, T. B., Brook, I. & Stiefel, S. M. ( 1990;). Quantitative study of wound infection in irradiated mice. Int J Radiat Biol 58, 341–350.[CrossRef]
    [Google Scholar]
  16. Elliott, T. B., Ledney, G. D., Harding, R. A., Henderson, P. L., Gerstenberg, H. M., Rotruck, J. R., Verdolin, M. H., Stille, C. M. & Krieger, A. G. ( 1995;). Mixed-field neutrons and γ-photons induce different changes in ileal bacteria and correlated sepsis in mice. Int J Radiat Biol 68, 311–320.[CrossRef]
    [Google Scholar]
  17. Elliott, T. B., Brook, I., Harding, R. A., Bouhaouala, S. S., Shoemaker, M. O. & Knudson, G. B. ( 2002;). Antimicrobial therapy for Bacillus anthracis-induced mixed infection in 60Co-γ-irradiated mice. Antimicrob Agents Chemother 46, 3463–3471.[CrossRef]
    [Google Scholar]
  18. Franz, D. R., Jahrling, P. B., Friedlander, A. M., McClain, D. J., Hoover, D. L., Bryne, W. R., Pavlin, J. A., Christopher, G. W. & Eitzen, E. M., Jr ( 1997;). Clinical recognition and management of patients exposed to biological warfare agents. JAMA 278, 399–411.[CrossRef]
    [Google Scholar]
  19. Frean, J., Klugman, K. P., Arntzen, L. & Bukofzer, S. ( 2003;). Susceptibility of Bacillus anthracis to eleven antimicrobial agents including novel fluoroquinolones and a ketolide. J Antimicrob Chemother 52, 297–299.[CrossRef]
    [Google Scholar]
  20. Friedlander, A. M., Welkos, S. L., Pitt, M. L. & 8 other authors ( 1993;). Postexposure prophylaxis against experimental inhalation anthrax. J Infect Dis 167, 1239–1243.[CrossRef]
    [Google Scholar]
  21. Inglesby, T. V., Henderson, D. A., Bartlett, J. G. & 11 other authors ( 1999;). Anthrax as a biological weapon: medical and public health management.Working Group on Civilian Biodefense. JAMA 281, 1735–1745.[CrossRef]
    [Google Scholar]
  22. Knudson, G. B. ( 1986;). Treatment of anthrax in man: history and current concepts. Military Medicine 151, 71–77.
    [Google Scholar]
  23. National Research Council ( 1996;). Guide for the Care and Use of Laboratory Animals. Washington, D.C.: Institute of Laboratory Animal Resources Commission on Life Sciences.
  24. Onyeji, C. O., Bui, K. Q., Owens, R. C., Jr, Nicolau, D. P., Quintiliani, R. & Nightingale, C. H. ( 1999;). Comparative efficacies of levofloxacin and ciprofloxacin against Streptococcus pneumoniae in a mouse model of experimental septicaemia. Int J Antimicrob Agents 12, 107–114.[CrossRef]
    [Google Scholar]
  25. Pile, J. C., Malone, J. D., Eitzen, E. M. & Friedlander, A. M. ( 1998;). Anthrax as a potential biological warfare agent. Arch Intern Med 158, 429–434.[CrossRef]
    [Google Scholar]
  26. Saffiotti, W., Cefis, F. & Kolb, L. H. ( 1968;). A method for the experimental induction of bronchogenic carcinoma. Cancer Res 28, 104–124.
    [Google Scholar]
  27. Schaeffer, P., Millet, J. & Aubert, J. P. ( 1965;). Catabolic repression of bacterial sporulation. Proc Natl Acad Sci 54, 704–711.[CrossRef]
    [Google Scholar]
  28. Tessier, P. R., Kim, M. K., Zhou, W., Xuan, D., Li, C., Ye, M., Nightingale, C. H. & Nicolau, D. P. ( 2002;). Pharmacodynamic assessment of clarithromycin in a murine model of pneumococcal pneumonia. Antimicrob Agents Chemother 46, 1425–1434.[CrossRef]
    [Google Scholar]
  29. World Health Organization ( 1970;). Health Aspects of Chemical and Biological Weapons: a Report of a WHO Group of Consultants. Geneva, Switzerland: World Health Organization.
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46166-0
Loading
/content/journal/jmm/10.1099/jmm.0.46166-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error