1887

Abstract

Six isolates that exhibited resistance to a wide spectrum of antibiotics were recovered from the intensive care units in the First Affiliated Hospital, Zhejiang University, Hangzhou, China. All isolates contained two plasmids of approximately 95 kb and 200 kb. The 95 kb plasmid was shown to be transferable by conjugation experiments. Isoelectric focusing patterns of the β-lactamases extracted from the six transconjugants were identical, displaying five pI bands: 5.4, 7.75, 8.0, 8.2 and 8.4. The band corresponding to a pI of 7.75 could be inhibited by cloxacillin but not clavulanic acid, while the other bands could be inhibited by clavulanic acid but not cloxacillin. The 95 kb plasmid was digested with dIII and a recombinant plasmid pT948 was obtained. The insert was found to contain , regulatory gene and an insertion element (IS), which was downstream of . PCR and DNA sequencing results confirmed that the 95 kb plasmid encoded at least four β-lactamase genes: , , and . Epidemiological typing by PFGE of the six clinical isolates of demonstrated identical genotypic patterns. In conclusion, all results indicated that the six multi-drug resistant clinical isolates of most probably originated from one clone and caused a localized epidemic in the intensive care units.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46151-0
2005-09-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/9/JM540913.html?itemId=/content/journal/jmm/10.1099/jmm.0.46151-0&mimeType=html&fmt=ahah

References

  1. Chanawong, A., M'Zali, F. H., Heritage, J., Xiong, J. H. & Hawkey, P. M. ( 2002;). Three cefotaximases, CTX-M-9, CTX-M-13, and CTX-M-14, among Enterobacteriaceae in the People's Republic of China. Antimicrob Agents Chemother 46, 630–637.[CrossRef]
    [Google Scholar]
  2. Cheng, Y. & Chen, M. ( 1994;). Extended-spectrum β-lactamases in clinical isolates of Enterobacter gergoviae and Escherichia coli in China. Antimicrob Agents Chemother 38, 2838–2842.[CrossRef]
    [Google Scholar]
  3. Coudron, P. E., Moland, E. S. & Thomson, K. S. ( 2000;). Occurrence and detection of AmpC beta-lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis isolates at a veterans medical center. J Clin Microbiol 38, 1791–1796.
    [Google Scholar]
  4. Essack, S. Y., Hall, L. M. C. & Livermore, D. M. ( 2004;). Klebsiella pneumoniae isolate from South Africa with multiple TEM, SHV and AmpC beta-lactamases. Int J Antimicrob Agents 23, 398–400.[CrossRef]
    [Google Scholar]
  5. Fortineau, N., Poirel, L. & Nordmann, P. ( 2001;). Plasmid-mediated and inducible cephalosporinase DHA-2 from Klebsiella pneumoniae. J Antimicrob Chemother 47, 207–210.[CrossRef]
    [Google Scholar]
  6. Gniadkowski, M., Schneider, I., Palucha, A., Jungwirth, R., Mikiewicz, B. & Bauernfeind, A. ( 1998;). Cefotaxime-resistant Enterobacteriaceae isolates from a hospital in Warsaw, Poland: identification of a new CTX-M-3 cefotaxime-hydrolyzing beta-lactamase that is closely related to the CTX-M-1/MEN-1 enzyme. Antimicrob Agents Chemother 42, 827–832.
    [Google Scholar]
  7. Gouby, A., Neuwirth, C., Bourg, G., Bouziges, N., Carles-Nurit, M. J., Despaux, E. & Ramuz, M. ( 1994;). Epidemiological study by pulsed-field gel electrophoresis of an outbreak of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a geriatric hospital. J Clin Microbiol 32, 301–305.
    [Google Scholar]
  8. Hanson, N. D., Thomson, K. S., Moland, E. S., Sanders, C. C., Berthold, G. & Penn, R. G. ( 1999;). Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmid-mediated AmpC. J Antimicrob Chemother 44, 377–380.[CrossRef]
    [Google Scholar]
  9. Ji, S. J., Gu, Y. M., Tan, W. T., Wang, D. D., Feng, X. J., Zhou, Z. H., Yu, Y. S., Chen, Y. G. & Li, L. J. ( 2004;). Genotype distribution of extended-spectrum β-lactamases produced by Escherichia coli and Klebsiella pneumoniae in China. Chin J Lab Med 27, 590–593 (in Chinese).
    [Google Scholar]
  10. Kado, C. I. & Liu, S. T. ( 1981;). Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145, 1365–1373.
    [Google Scholar]
  11. Kim, J., Shin, H. S., Seol, S. Y. & Cho, D. T. ( 2002;). Relationship between bla SHV−12 and bla SHV−2a in Korea. J Antimicrob Chemother 49, 261–267.[CrossRef]
    [Google Scholar]
  12. Lemozy, J., Sirot, D., Chanal, C., Huc, C., Labia, R., Dabernat, H. & Sirot, J. ( 1995;). First characterization of inhibitor-resistant TEM (IRT) β-lactamases in Klebsiella pneumoniae strains. Antimicrob Agents Chemother 39, 2580–2582.[CrossRef]
    [Google Scholar]
  13. Li, C. R., Li, Y. & Zhang, P. A. ( 2003;). Dissemination and spread of CTX-M extended-spectrum β-lactamases among clinical isolates of Klebsiella pneumoniae in central China. Int J Antimicrob Agents 22, 521–525.[CrossRef]
    [Google Scholar]
  14. Ling, J. M., Lo, N. W. S., Ho, Y. M., Kam, K. M., Hoa, N. T. T., Phi, L. & Cheng, A. F. ( 2000;). Molecular methods for the epidemiological typing of Salmonella enterica serotype Typhi from Hong Kong and Vietnam. J Clin Microbiol 38, 292–300.
    [Google Scholar]
  15. Moland, E. S., Hanson, N. D., Herrera, V. L., Black, J. A., Lockhart, T., Hossain, J. A., Johnson, J. A., Goering, R. V. & Thomson, K. S. ( 2003;). Plasmid-mediated, carbapenem-hydrolysing β-lactamase, KPC-2, in Klebsiella pneumoniae isolates. J Antimicrob Chemother 51, 711–714.[CrossRef]
    [Google Scholar]
  16. Nadjar, D., Rouveau, M., Verdet, C., Donay, L., Herrmann, J., Lagrange, P. H., Philippon, A. & Arlet, G. ( 2000;). Outbreak of Klebsiella pneumoniae producing transferable AmpC-type β-lactamase (ACC-1) originating from Hafnia alvei. FEMS Microbiol Lett 187, 35–40.
    [Google Scholar]
  17. Nakano, R., Okamoto, R., Nakano, Y., Kaneko, K., Okitsu, N., Hosaka, Y. & Inoue, M. ( 2004;). CFE-1, a novel plasmid-encoded AmpC-lactamase with an ampR gene originating from Citrobacter freundii. Antimicrob Agents Chemother 48, 1151–1158.[CrossRef]
    [Google Scholar]
  18. Pai, H., Choi, E. H., Lee, H. J., Hong, J. Y. & Jacoby, G. A. ( 2001;). Identification of CTX-M-14 extended-spectrum beta-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, and Klebsiella pneumoniae in Korea. J Clin Microbiol 39, 3747–3749.[CrossRef]
    [Google Scholar]
  19. Poirel, L., Guibert, M., Girlich, D., Naas, T. & Nordmann, P. ( 1999;). Cloning, sequence analyses, expression, and distribution of ampCampR from Morganella morganii clinical isolates. Antimicrob Agents Chemother 43, 769–776.
    [Google Scholar]
  20. Poirel, L., Héritier, C., Tolün, V. & Nordmann, P. ( 2004;). Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48, 15–22.[CrossRef]
    [Google Scholar]
  21. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  22. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995;). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  23. Verdet, C., Arlet, G., Barnaud, G., Lagrange, P. H. & Philippon, A. ( 2000;). A novel integron in Salmonella enterica serovar Enteriditis, carrying the bla DHA−1 gene and its regulator gene ampR, originated from Morganella morganii. Antimicrob Agents Chemother 44, 222–225.[CrossRef]
    [Google Scholar]
  24. Wang, H., Kelkar, S., Wu, W., Chen, M. & Quinn, J. P. ( 2003;). Clinical isolates of Enterobacteriaceae producing extended-spectrum beta-lactamases: prevalence of CTX-M-3 at a hospital in China. Antimicrob Agents Chemother 47, 790–793.[CrossRef]
    [Google Scholar]
  25. Yagi, T., Kurokawa, H., Shibata, N., Shibayama, K. & Arakawa, Y. ( 2000;). A preliminary survey of extended-spectrum beta-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol Lett 184, 53–56.
    [Google Scholar]
  26. Yamasaki, K., Komatsu, M., Yamashita, T. & 7 other authors ( 2003;). Production of CTX-M-3 extended-spectrum β-lactamase and IMP-1 metallo β-lactamase by five Gram-negative bacilli: survey of clinical isolates from seven laboratories collected in 1998 and 2000, in the Kinki region of Japan. J Antimicrob Chemother 51, 631–638.[CrossRef]
    [Google Scholar]
  27. Yan, J. J., Ko, W. C. & Wu, J. J. ( 2001;). Identification of a plasmid encoding SHV-12, TEM-1, and a variant of IMP-2 metallo-β-lactamase, IMP-8, from a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother 45, 2368–2371.[CrossRef]
    [Google Scholar]
  28. Yan, J. J., Ko, W. C., Jung, Y. C., Chuang, C. L. & Wu, J. J. ( 2002;). Emergence of Klebsiella pneumoniae isolates producing inducible DHA-1 beta-lactamase in a university hospital in Taiwan. J Clin Microbiol 40, 3121–3126.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46151-0
Loading
/content/journal/jmm/10.1099/jmm.0.46151-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error