1887

Abstract

Type 1 diabetes (T1D) is an autoimmune disease linked with genetic factors as well as with environmental triggers, such as virus infections, but the aetiology is still unclear. The authors analysed serum from autoantibody-positive ( = 50) and autoantibody-negative ( = 50) schoolchildren as well as children newly diagnosed with T1D ( = 47; time from diagnosis, median 5 days, interquartile range 1–12 days) for the presence and frequency of enterovirus (EV) and adenovirus sequences. The autoantibody-positive and -negative groups were part of the Karlsburg Type 1 Diabetes Risk Study of a Normal Schoolchild Population, which represents a general population without T1D first-degree relatives. There was no significant seasonality of sampling in any of the three groups investigated. EV RNA sequences were detected in 10 of 50 (20 %) autoantibody-positive children and in 17 of 47 (36 %) children newly diagnosed with T1D, but only in two of 50 (4 %) of the age- and sex-matched controls ( < 0.05, < 0.001). Characterization of the EV amplicons by direct sequencing revealed high homology with coxsackievirus B group. For adenovirus we found no data to support an association with T1D. The data support the hypothesis that different enteroviruses may be aetiologically important as a trigger and/or accelerating factor in the process of T1D development.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46015-0
2005-09-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/9/JM540912.html?itemId=/content/journal/jmm/10.1099/jmm.0.46015-0&mimeType=html&fmt=ahah

References

  1. Al-Hello, H., Davydova, B., Smura, T., Kaialainen, S., Ylipaasto, P., Saario, E., Hovi, T., Rieder, E. & Roivainen, M. ( 2005;). Phenotypic and genetic changes in coxsackievirus B5 following repeated passage in mouse pancreas in vivo. J Med Virol 75, 566–574.[CrossRef]
    [Google Scholar]
  2. Allard, A., Albinsson, B. & Wadell, G. ( 1992;). Detection of adenoviruses in stools from healthy persons and patients with diarrhea by two-step polymerase chain reaction. J Med Virol 37, 149–157.[CrossRef]
    [Google Scholar]
  3. Andréoletti, L., Hober, D., Hober-Vandenberghe, C., Belaich, S., Vantyghem, M.-C., Lefebvre, J. & Wattre, P. ( 1997;). Detection of coxsackie B virus RNA sequences in whole blood samples from adult patients at the onset of type I diabetes mellitus. J Med Virol 52, 121–127.[CrossRef]
    [Google Scholar]
  4. Clements, G. B., Galbraith, D. N. & Taylor, K. W. ( 1995;). Coxsackie B virus infection and onset of childhood diabetes. Lancet 346, 221–223.[CrossRef]
    [Google Scholar]
  5. Corless, C. E., Guiver, M., Borrow, R., Edwards-Jones, V., Fox, A. J., Kaczmarski, E. B. & Mutton, K. J. ( 2002;). Development and evaluation of a ‘real-time’ RT-PCR for the detection of enterovirus and parechovirus RNA in CSF and throat swab samples. J Med Virol 67, 555–562.[CrossRef]
    [Google Scholar]
  6. Graves, P. M., Rotbart, H. A., Nix, W. A., Pallansch, M. A., Erlich, H. A., Norris, J. M., Hoffman, M., Eisenbarth, G. S. & Rewers, M. ( 2003;). Prospective study of enteroviral infections and development of beta-cell autoimmunity.Diabetes autoimmunity study in the young (DAISY). Diabetes Res Clin Pract 59, 51–61.[CrossRef]
    [Google Scholar]
  7. Heim, A., Ebnet, C., Harste, G. & Pring-Åkerblom, P. ( 2003;). Rapid and quantitative detection of human adenovirus DNA by real-time PCR. J Med Virol 70, 228–239.[CrossRef]
    [Google Scholar]
  8. Helfand, R. F., Gary, H. E., Freeman, C. Y., Anderson, L. J., Pittsburgh Diabetes Research Group & Pallansch, M. A. ( 1995;). Serologic evidence of an association between enteroviruses and the onset of type 1 diabetes mellitus. J Infect Dis 172, 1206–1211.[CrossRef]
    [Google Scholar]
  9. Hiltunen, M., Hyöty, H., Knip, M. & 9 other authors ( 1997;). Islet cell antibody seroconversion in children is temporally associated with enterovirus infections. J Infect Dis 175, 554–560.[CrossRef]
    [Google Scholar]
  10. Hyöty, H. & Taylor, K. W. ( 2002;). The role of viruses in human diabetes. Diabetologia 45, 1353–1361.[CrossRef]
    [Google Scholar]
  11. Hyöty, H., Hiltunen, M., Knip, M. & 9 other authors ( 1995;). A prospective study of the role of coxsackie B and other enterovirus infections in the pathogenesis of IDDM. Diabetes 44, 652–657.[CrossRef]
    [Google Scholar]
  12. Jun, H. S. & Yoon, J. W. ( 2004;). A new look at viruses in type 1 diabetes. ILAR J 45, 349–374.[CrossRef]
    [Google Scholar]
  13. Kang, Y., Chatterjee, N. K., Nodwell, M. J. & Yoon, J. W. ( 1994;). Complete nucleotide sequence of a strain coxsackie B4 virus of human origin that induces diabetes in mice and its comparison with nondiabetogenic coxsackie B4 JBV strain. J Med Virol 44, 353–361.[CrossRef]
    [Google Scholar]
  14. Kawashima, H., Ihara, T., Ioi, H. & 8 other authors ( 2004;). Enterovirus-related type 1 diabetes mellitus and antibodies to glutamic acid decarboxylase in Japan. J Infect 49, 147–151.[CrossRef]
    [Google Scholar]
  15. Lönnrot, M., Korpela, K., Knip, M. & 8 other authors ( 2000a;). Enterovirus infection as a risk factor for β-cell autoimmunity in a prospectively observed birth cohort. Diabetes 49, 1314–1318.[CrossRef]
    [Google Scholar]
  16. Lönnrot, M., Salminen, K., Knip, M. & 7 other authors ( 2000b;). Enterovirus RNA in serum is a risk factor for beta-cell autoimmunity and clinical type 1 diabetes: a prospective study. J Med Virol 61, 214–220.[CrossRef]
    [Google Scholar]
  17. Matsuse, T., Hayashi, S., Kuwano, K., Keunecke, H., Jefferies, W., A. & Hogg, J. C. ( 1992;). Latent adenoviral infection in the pathogenesis of chronic airways obstruction. Am Rev Respir Dis 146, 177–184.[CrossRef]
    [Google Scholar]
  18. Mentel, R., Döpping, G., Wegner, U., Seidel, W., Liebermann, H. & Döhner, L. ( 1997;). Adenovirus-receptor interaction with human lymphocytes. J Med Virol 51, 252–257.[CrossRef]
    [Google Scholar]
  19. Nairn, C. & Clements, G. B. ( 1999;). A study of enterovirus isolations in Glasgow from 1977 to 1997. J Med Virol 58, 304–312.[CrossRef]
    [Google Scholar]
  20. Nairn, C., Galbraith, D. N., Taylor, K. W. & Clements, G. B. ( 1999;). Enterovirus variants in the serum of children at the onset of type 1 diabetes mellitus. Diabet Med 16, 509–513.[CrossRef]
    [Google Scholar]
  21. Oberste, M. S., Maher, K., Kilpatrick, D. R. & Pallansch, M. A. ( 1999;). Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73, 1941–1948.
    [Google Scholar]
  22. Oberste, M. S., Maher, K. & Pallansch, M. A. ( 2004a;). Evidence for frequent recombination within species human enterovirus B based on complete genomic sequences of all thirty-seven serotypes. J Virol 78, 855–867.[CrossRef]
    [Google Scholar]
  23. Oberste, M. S., Penaranda, S. & Pallansch, M. A. ( 2004b;). RNA recombination plays a major role in genomic change during circulation of coxsackie B viruses. J Virol 78, 2948–2955.[CrossRef]
    [Google Scholar]
  24. Ramsingh, A., Araki, H., Bryant, S. & Hixson, A. ( 1992;). Identification of candidate sequences that determine virulence in coxsackievirus B4. Virus Res 23, 281–292.[CrossRef]
    [Google Scholar]
  25. Roivainen, M., Knip, M., Hyöty, H., Kulmala, P., Hiltunen, M., Vähäsalo, P., Hovi, T., Åkerblom, H. K. & the Childhood Diabetes in Finland (DiMe) Study Group ( 1998;). Several different enterovirus serotypes can be associated with prediabetic autoimmune episodes and onset of overt IDDM. J Med Virol 56, 74–78.[CrossRef]
    [Google Scholar]
  26. Sadeharju, K., Hämäläinen, A.-M., Knip, M. & 7 other authors ( 2003;). Enterovirus infections as a risk factor for type 1 diabetes: virus analyses in a dietary intervention trial. Clin Exp Immunol 132, 271–277.[CrossRef]
    [Google Scholar]
  27. Salminen, K., Sadeharju, K., Lönnrot, M. & 7 other authors ( 2003;). Enterovirus infections are associated with the induction of β-cell autoimmunity in a prospective birth cohort study. J Med Virol 69, 91–98.[CrossRef]
    [Google Scholar]
  28. Schlosser, M., Strebelow, M., Wassmuth, R., Arnold, M.-L., Breunig, I., Rjasanowski, I., Ziegler, B. & Ziegler, M. ( 2002;). The Karlsburg type 1 diabetes risk study of a normal schoolchild population: association of β-cell autoantibodies and human leukocyte antigen-DQB1 alleles in antibody-positive individuals. J Clin Endocrinol Metab 87, 2254–2261.
    [Google Scholar]
  29. Severini, G. M., Mestroni, L., Falaschi, A., Camerini, F. & Giacca, M. ( 1993;). Nested polymerase chain reaction for high-sensitivity detection of enteroviral RNA in biological samples. J Clin Microbiol 31, 1345–1349.
    [Google Scholar]
  30. Strebelow, M., Schlosser, M., Ziegler, B., Rjasanowski, I. & Ziegler, M. ( 1999;). Karlsburg type 1 diabetes risk study of a general population: frequencies and interactions of the four major type 1 diabetes-associated autoantibodies studied in 9419 schoolchildren. Diabetologia 42, 661–670.[CrossRef]
    [Google Scholar]
  31. Szopa, T. M., Titchener, P. A., Portwood, N. D. & Taylor, K. W. ( 1993;). Diabetes mellitus due to viruses – some recent developments. Diabetologia 36, 687–695.[CrossRef]
    [Google Scholar]
  32. Takeuchi, S., Itoh, N., Uchio, E., Aoki, K. & Ohno, S. ( 1999;). Serotyping of adenoviruses on conjuctival scrapings by PCR and sequence analysis. J Clin Microbiol 37, 1839–1845.
    [Google Scholar]
  33. Thoelen, I., Lemey, P., Van der Donck, I., Beuselinck, K., Lindberg, A. M. & Van Ranst, M. ( 2003;). Molecular typing and epidemiology of enteroviruses identified from an outbreak of aseptic meningitis in Belgium during the summer of 2000. J Med Virol 70, 420–429.[CrossRef]
    [Google Scholar]
  34. Titchener, P. A., Jenkins, O., Szopa, T. M., Taylor, K. W. & Almond, J. W. ( 1994;). Complete nucleotide sequence of a beta-cell tropic variant of coxsackievirus B4. J Med Virol 42, 369–373.[CrossRef]
    [Google Scholar]
  35. Yanagawa, B., Spiller, O. B., Proctor, D. G., Choy, J., Luo, H., Zhang, H. M., Suarez, A., Yang, D. & McManus, B. M. ( 2004;). Soluble recombinant coxsackievirus and adenovirus receptor abrogates coxsackievirus B3-mediated pancreatitis and myocarditis in mice. J Infect Dis 189, 1431–1439.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46015-0
Loading
/content/journal/jmm/10.1099/jmm.0.46015-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error