1887

Abstract

Human listeriosis is generally caused by consumption of ready-to-eat (RTE) foods that are stored for extended periods of time at refrigeration temperatures and that permit the growth of the causative agent, . Food-consumption patterns in China are undergoing rapid changes and more regular consumption of refrigerated-storage RTE foods may increase the risk of human listeriosis. In total, 40 isolates were obtained from food ( = 32) and sewage ( = 6) samples and from two human listeriosis cases that occurred in China. All isolates were characterized into molecular subtypes by DNA sequencing of the 597 bp 3′-terminal region of the virulence gene . Sequence data were used to classify the 40 Chinese isolates into sequence types and phylogenetic lineages, and to compare the sequence types of the Chinese isolates with those of isolates from the USA. Phylogenetic analyses showed that the Chinese isolates could be separated into two genetic lineages, with 14 and 26 isolates belonging to lineages I and II, respectively. Lineage II could be subdivided further into two clusters, IIA and IIB. Lineages I and II were identical to the two lineages described previously among US isolates. In total, 14 sequence types could be differentiated among the 40 Chinese isolates; two specific sequence types were found among both Chinese and US isolates. Isolates belonging to lineage II showed a significantly lower ability to invade and multiply within human intestinal epithelial Caco-2 cells than lineage I isolates. It was concluded that DNA sequencing of the 3′-terminal region of appears to be an effective method for rapid subtype and lineage classification of . As strains belonging to lineages I and II have previously been found among isolates from Europe and North America, these results show that clonal groups found in China are very similar to those found in the USA. Many strains may thus represent globally distributed clonal types. Together with the first description of two human listeriosis cases in China, these data indicate that changes in food-distribution and -consumption patterns in China and other countries will probably lead to the emergence of human listeriosis as a food-safety issue, as virulent strains of this pathogen appear to be present in the Chinese food supply.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45882-0
2005-03-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/3/JM540302.html?itemId=/content/journal/jmm/10.1099/jmm.0.45882-0&mimeType=html&fmt=ahah

References

  1. Aarnisalo, K., Autio, T., Sjoberg, A. M., Lunden, J., Korkeala, H. & Suihko, M. L. ( 2003;). Typing of Listeria monocytogenes isolates originating from the food processing industry with automated ribotyping and pulsed-field gel electrophoresis. J Food Prot 66, 249–255.
    [Google Scholar]
  2. Altimira, J., Prats, N., López, S., Domingo, M., Briones, V., Domínguez, L. & Marco, A. ( 1999;). Repeated oral dosing with Listeria monocytogenes in mice as a model of central nervous system listeriosis in man. J Comp Pathol 121, 117–125.[CrossRef]
    [Google Scholar]
  3. Borucki, M. K., Kim, S. H., Call, D. R., Smole, S. C. & Pagotto, F. ( 2004;). Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. J Clin Microbiol 42, 5270–5276.[CrossRef]
    [Google Scholar]
  4. Brosch, R., Chen, J. & Luchansky, J. B. ( 1994;). Pulsed-field fingerprinting of listeriae: identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl Environ Microbiol 60, 2584–2592.
    [Google Scholar]
  5. Cai, S., Kabuki, D. Y., Kuaye, A. Y., Cargioli, T. G., Chung, M. S., Nielsen, R. & Wiedmann, M. ( 2002;). Rational design of DNA sequence-based strategies for subtyping Listeria monocytogenes. J Clin Microbiol 40, 3319–3325.[CrossRef]
    [Google Scholar]
  6. Call, D. R., Borucki, M. K. & Besser, T. E. ( 2003;). Mixed-genome microarrays reveal multiple serotype and lineage-specific differences among strains of Listeria monocytogenes. J Clin Microbiol 41, 632–639.[CrossRef]
    [Google Scholar]
  7. Chan, M.-S., Maiden, M. C. J. & Spratt, B. G. ( 2001;). Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics 17, 1077–1083.[CrossRef]
    [Google Scholar]
  8. Chasseignaux, E., Toquin, M.-T., Ragimbeau, C., Salvat, G., Colin, P. & Ermel, G. ( 2001;). Molecular epidemiology of Listeria monocytogenes isolates collected from the environment, raw meat and raw products in two poultry- and pork-processing plants. J Appl Microbiol 91, 888–899.[CrossRef]
    [Google Scholar]
  9. Destro, M. T., Leitão, M. F. F. & Farber, J. M. ( 1996;). Use of molecular typing methods to trace the dissemination of Listeria monocytogenes in a shrimp processing plant. Appl Environ Microbiol 62, 705–711.
    [Google Scholar]
  10. Enright, M. C., Spratt, B. G., Kalia, A., Cross, J. H. & Bessen, D. E. ( 2001;). Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect Immun 69, 2416–2427.[CrossRef]
    [Google Scholar]
  11. Ericsson, H., Unnerstad, H., Mattsson, J. G., Danielsson-Tham, M.-L. & Tham, W. ( 2000;). Molecular grouping of Listeria monocytogenes based on the sequence of the inlB gene. J Med Microbiol 49, 73–80.
    [Google Scholar]
  12. Hof, H. & Rocourt, J. ( 1992;). Is any strain of Listeria monocytogenes detected in food a health risk? Int J Food Microbiol 16, 173–182.[CrossRef]
    [Google Scholar]
  13. Inoue, S., Nakama, A., Arai, Y. & 7 other authors ( 2000;). Prevalence and contamination levels of Listeria monocytogenes in retail foods in Japan. Int J Food Microbiol 59, 73–77.[CrossRef]
    [Google Scholar]
  14. Keto-Timonen, R. O., Autio, T. J. & Korkeala, H. J. ( 2003;). An improved amplified fragment length polymorphism (AFLP) protocol for discrimination of Listeria isolates. Syst Appl Microbiol 26, 236–244.[CrossRef]
    [Google Scholar]
  15. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001;). mega2: molecular evolutionary genetic analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  16. Larsen, C. N., Nørrung, B., Sommer, H. M. & Jakobsen, M. ( 2002;). In vitro and in vivo invasiveness of different pulsed-field gel electrophoresis types of Listeria monocytogenes. Appl Environ Microbiol 68, 5698–5703.[CrossRef]
    [Google Scholar]
  17. Liu, D., Ainsworth, A. J., Austin, F. W. & Lawrence, M. L. ( 2003;). Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes. J Med Microbiol 52, 1065–1070.[CrossRef]
    [Google Scholar]
  18. Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., Griffin, P. M. & Tauxe, R. V. ( 1999;). Food-related illness and death in the United States. Emerg Infect Dis 5, 607–625.[CrossRef]
    [Google Scholar]
  19. Mereghetti, L., Lanotte, P., Savoye-Marczuk, V., Marquet-Van Der Mee, N., Audurier, A. & Quentin, R. ( 2002;). Combined ribotyping and random multiprimer DNA analysis to probe the population structure of Listeria monocytogenes. Appl Environ Microbiol 68, 2849–2857.[CrossRef]
    [Google Scholar]
  20. Moorhead, S. M., Dykes, G. A. & Cursons, R. T. ( 2003;). An SNP-based PCR assay to differentiate between Listeria monocytogenes lineages derived from phylogenetic analysis of the sigB gene. J Microbiol Methods 55, 425–432.[CrossRef]
    [Google Scholar]
  21. Nadon, C. A., Woodward, D. L., Young, C., Rodgers, F. G. & Wiedmann, M. ( 2001;). Correlations between molecular subtyping and serotyping of Listeria monocytogenes. J Clin Microbiol 39, 2704–2707.[CrossRef]
    [Google Scholar]
  22. Norton, D. M., Scarlett, J. M., Horton, K., Sue, D., Thimothe, J., Boor, K. J. & Wiedmann, M. ( 2001;). Characterization and pathogenic potential of Listeria monocytogenes isolates from the smoked fish industry. Appl Environ Microbiol 67, 646–653.[CrossRef]
    [Google Scholar]
  23. Piffaretti, J.-C., Kressebuch, H., Aeschbacher, M., Bille, J., Bannerman, E., Musser, J. M., Selander, R. K. & Rocourt, J. ( 1989;). Genetic characterization of clones of the bacterium Listeria monocytogenes causing epidemic disease. Proc Natl Acad Sci U S A 86, 3818–3822.[CrossRef]
    [Google Scholar]
  24. Rasmussen, O. F., Skouboe, P., Dons, L., Rossen, L. & Olsen, J. E. ( 1995;). Listeria monocytogenes exists in at least three evolutionary lines: evidence from flagellin, invasive associated protein and listeriolysin O genes. Microbiology 141, 2053–2061.[CrossRef]
    [Google Scholar]
  25. Sauders, B. D., Fortes, E. D., Morse, D. L., Dumas, N., Kiehlbauch, J. A., Schukken, Y., Hibbs, J. R. & Wiedmann, M. ( 2003;). Molecular subtyping to detect human listeriosis clusters. Emerg Infect Dis 9, 672–680.[CrossRef]
    [Google Scholar]
  26. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995;). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  27. Van Langendonck, N., Bottreau, E., Bailly, S., Tabouret, M., Marly, J., Pardon, P. & Velge, P. ( 1998;). Tissue culture assays using Caco-2 cell line differentiate virulent from non-virulent Listeria monocytogenes strains. J Appl Microbiol 85, 337–346.[CrossRef]
    [Google Scholar]
  28. Vázquez-Boland, J. A., Kuhn, M., Berche, P., Chakraborty, T., Domínguez-Bernal, G., Goebel, W., González-Zorn, B., Wehland, J. & Kreft, J. ( 2001;). Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14, 584–640.[CrossRef]
    [Google Scholar]
  29. Vines, A. & Swaminathan, B. ( 1998;). Identification and characterization of nucleotide sequence differences in three virulence-associated genes of Listeria monocytogenes strains representing clinically important serotypes. Curr Microbiol 36, 309–318.[CrossRef]
    [Google Scholar]
  30. Wiedmann, M. ( 2002;). Molecular subtyping methods for Listeria monocytogenes. J AOAC Int 85, 524–531.
    [Google Scholar]
  31. Wiedmann, M., Bruce, J. L., Keating, C., Johnson, A. E., McDonough, P. L. & Batt, C. A. ( 1997;). Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 65, 2707–2716.
    [Google Scholar]
  32. Yde, M. & Genicot, A. ( 2004;). Use of PFGE to characterize clonal relationships among Belgian clinical isolates of Listeria monocytogenes. J Med Microbiol 53, 399–402.[CrossRef]
    [Google Scholar]
  33. Zhou, X. & Jiao, X. ( 2004;). Investigation of Listeria monocytogenes contamination pattern in local Chinese food market and the tracing of two clinical isolates by RAPD analysis. Food Microbiol 21, 695–702.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45882-0
Loading
/content/journal/jmm/10.1099/jmm.0.45882-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error