1887

Abstract

causes infections associated with medical devices including central venous catheters, orthopaedic prosthetic joints and artificial heart valves. This coagulase-negative staphylococcus produces a conventional cellular lipoteichoic acid (LTA) and also releases a short-glycerophosphate-chain-length form of LTA (previously termed lipid S) into the medium during growth. The relative pro-inflammatory activities of cellular and short-chain-length exocellular LTA were investigated in comparison with peptidoglycan and wall teichoic acid from and LPS from O111. The ability of these components to stimulate the production of pro-inflammatory cytokines [interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α] and nitric oxide was investigated in a murine macrophage-like cell line (J774.2), and in peritoneal and splenic macrophages. On a weight-for-weight basis the short-chain-length exocellular LTA was the most active of the products, stimulating significant amounts of each of the inflammatory cytokines and nitric oxide, although it was approximately 100-fold less active than LPS from . By comparison the full-chain-length cellular LTA and peptidoglycan were less active and the wall teichoic acid had no activity. As an exocellular product potentially released from biofilms, the short-chain-length exocellular LTA may act as the prime mediator of the host inflammatory response to device-related infection by this organism and act as the Gram-positive equivalent of LPS in Gram-negative sepsis. The understanding of the role of short-chain-length exocellular LTA in Gram-positive sepsis may lead to improved treatment strategies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45872-0
2005-04-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/54/4/JM540401.html?itemId=/content/journal/jmm/10.1099/jmm.0.45872-0&mimeType=html&fmt=ahah

References

  1. Archibald, A. R. & Baddiley, J. ( 1968;). The glycerol teichoic acid from walls of Staphylococcus epidermidis I2. Biochem J 110, 583–588.
    [Google Scholar]
  2. Bhakdi, S., Klonisch, P., Nuber, P. & Fischer, W. ( 1991;). Stimulation of monokine production by lipoteichoic acids. Infect Immun 59, 4614–4620.
    [Google Scholar]
  3. Boyce, J. M. ( 1996;). Epidemiology and prevention of nosocomial infections. In The Staphylococci in Human Disease, pp. 309–330. Edited by K. Crossley & G. Archer. New York: Churchill Livingstone.
  4. Bucher, M., Ittner, K. P., Zimmermann, M., Wolf, K., Hobbhahn, J. & Kurtz, A. ( 1997;). Nitric oxide synthase isoform III gene expression in rat liver is up-regulated by lipopolysaccharide and lipoteichoic acid. FEBS Lett 412, 511–514.[CrossRef]
    [Google Scholar]
  5. Cleveland, M. G., Gorham, J. D., Murphy, T. L., Tuomanen, E. & Murphy, K. M. ( 1996;). Lipoteichoic acid preparations of Gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway. Infect Immun 64, 1906–1912.
    [Google Scholar]
  6. Coley, J., Duckworth, M. & Baddiley, J. ( 1972;). The occurrence of lipoteichoic acids in the membranes of Gram-positive bacteria. J Gen Microbiol 73, 587–591.[CrossRef]
    [Google Scholar]
  7. Connaughton, M., Lang, S., Tebbs, S. E., Littler, W. A., Lambert, P. A. & Elliott, T. S. J. ( 2001;). Rapid serodiagnosis of Gram-positive bacterial endocarditis. J Infect 42, 140–144.[CrossRef]
    [Google Scholar]
  8. Deininger, S., Stadelmaier, A., von Aulock, S., Morath, R. R. & Hartung, T. ( 2003;). Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J Immunol 170, 4134–4138.[CrossRef]
    [Google Scholar]
  9. De Kimpe, S. J., Hunter, M. L., Bryant, C. E., Thiemermann, C. & Vane, J. R. ( 1995a;). Delayed circulatory failure due to the induction of nitric oxide synthase by lipoteichoic acid from Staphylococcus aureus. Br J Pharmacol 114, 1317–1323.[CrossRef]
    [Google Scholar]
  10. De Kimpe, S. J., Kengatharan, K. M., Thiemermann, C. & Vane, J. R. ( 1995b;). The cell wall components peptidoglycan and lipoteichoic acid from Staphylococcus aureus act in synergy to cause shock and multiple organ failure. Proc Natl Acad Sci U S A 92, 10359–10363.[CrossRef]
    [Google Scholar]
  11. Elliott, T. S. J., Tebbs, S. E., Moss, H. A., Worthington, T., Spare, M. K., Faroqui, M. H. & Lambert, P. A. ( 2000;). A novel serological test for the diagnosis of central venous catheter-associated sepsis. J Infect 40, 262–266.[CrossRef]
    [Google Scholar]
  12. Farrell, A. M., Foster, T. J. & Holland, K. T. ( 1993;). Molecular analysis and expression of the lipase of Staphylococcus epidermidis. J Gen Microbiol 139, 267–277.[CrossRef]
    [Google Scholar]
  13. Fischer, W. ( 1993;). Molecular analysis of lipid macroamphiphiles by hydrophobic interaction chromatography, exemplified with lipoteichoic acids. Anal Biochem 208, 49-56.[CrossRef]
    [Google Scholar]
  14. Fischer, W. ( 1994;). Lipoteichoic acid and lipids in the membrane of Staphylococcus aureus. Med Microbiol Immunol (Berl) 183, 61–76.[CrossRef]
    [Google Scholar]
  15. Ginsburg, I. ( 2002;). Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis 2, 171–179.[CrossRef]
    [Google Scholar]
  16. Hattor, Y., Kasai, K., Akimoto, K. & Thiemermann, C. ( 1997;). Induction of NO synthesis by lipoteichoic acid from Staphylococcus aureus in J774 macrophages: involvement of a CD14-dependent pathway. Biochem Biophys Res Commun 233, 375–379.[CrossRef]
    [Google Scholar]
  17. Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K. & Akira, S. ( 1999;). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162, 3749–3752.
    [Google Scholar]
  18. Hussain, M., Hastings, J. G. M. & White, P. J. ( 1991a;). A chemically defined medium for slime production by coagulase-negative staphylococci. J Med Microbiol 34, 143–147.[CrossRef]
    [Google Scholar]
  19. Hussain, M., Hastings, J. G. M. & White, P. J. ( 1991b;). Isolation and composition of the extracellular slime made by coagulase-negative staphylococci in a chemically defined medium. J Infect Dis 163, 534–541.[CrossRef]
    [Google Scholar]
  20. Hussain, M., Hastings, J. G. M. & White, P. J. ( 1992;). Comparison of cell-wall teichoic acid with high-molecular-weight extracellular slime material from Staphylococcus epidermidis. J Med Microbiol 37, 368–375.[CrossRef]
    [Google Scholar]
  21. Kengatharan, K. M., de Kimpe, S. J., Robson, C., Foster, S. J. & Thiemermann, C. ( 1998;). Mechanism of Gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. J Exp Med 188, 305–315.[CrossRef]
    [Google Scholar]
  22. Lambe, D. W., Ferguson, K. P., Keplinger, J. L., Gemmell, C. G. & Kalbfleisch, J. H. ( 1990;). Pathogenicity of Staphylococcus lugdunensis, Staphylococcus schleiferi, and three other coagulase-negative staphylococci in a mouse model and possible virulence factors. Can J Microbiol 36, 455–463.[CrossRef]
    [Google Scholar]
  23. Lambert, P. A., van Maurik, A., Parvatham, S., Akhtar, Z., Fraise, A. P. & Krikler, S. J. ( 1996;). Potential of exocellular carbohydrate antigens of Staphylococcus epidermidis in the serodiagnosis of orthopaedic prosthetic infection. J Med Microbiol 44, 355–361.[CrossRef]
    [Google Scholar]
  24. Lambert, P. A., Worthington, T., Tebbs, S. E. & Elliott, T. S. J. ( 2000;). Lipid S, a novel Staphylococcus epidermidis exocellular antigen with potential for the serodiagnosis of infections. FEMS Immunol Med Microbiol 29, 195–202.[CrossRef]
    [Google Scholar]
  25. Molnàr, C., Hevessy, Z., Rozgonyi, F. & Gemmell, C. G. ( 1994;). Pathogenicity and virulence of coagulase-negative staphylococci in relation to adherence, hydrophobicity, and toxin production in vitro. J Clin Pathol 47, 743–748.[CrossRef]
    [Google Scholar]
  26. Morath, S., Geyer, A. & Hartung, T. ( 2001;). Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J Exp Med 193, 393–398.[CrossRef]
    [Google Scholar]
  27. Morath, S., Stadelmaier, A., Geyer, A., Schmidt, R. R. & Hartung, T. ( 2002;). Synthetic lipoteichoic acid from Staphylococcus aureus is a potent stimulus of cytokine release. J Exp Med 195, 1635–1640.[CrossRef]
    [Google Scholar]
  28. Neuhaus, F. C. & Baddiley, J. ( 2003;). A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67, 686–723.[CrossRef]
    [Google Scholar]
  29. Ohta, K., Komatsuzawa, H., Sugai, M. & Suginaka, H. ( 1998;). Zymographic characterization of Staphylococcus aureus cell wall. Microbiol Immunol 42, 231–235.[CrossRef]
    [Google Scholar]
  30. Paulsson, M., Ljungh, A. & Wadström, T. ( 1992;). Rapid identification of fibronectin, vitronectin, laminin, and collagen cell surface binding proteins on coagulase-negative staphylococci by particle agglutination assays. J Clin Microbiol 30, 2006–2012.
    [Google Scholar]
  31. Peters, G. & Schumacher-Perdreau, F. ( 1994;). Extracellular slime substance as a virulence determinant in Staphylococcus epidermidis. In Molecular Pathogenesis of Surgical Infections, pp. 109–116. Edited by T. Wadström, I. Holder & G. Kronvall. Deerfield Beach: Gustav Fischer Verlag.
  32. Poxton, I. R. & Hancock, I. C. ( 1988;). Separation and purification of surface components. In Bacterial Cell Surface Techniques, pp. 67–135. Chichester: Wiley.
  33. Rafiq, M., Worthington, T., Tebbs, S. E., Treacy, R. B. C., Dias, R., Lambert, P. A. & Elliott, T. S. J. ( 2000;). Serological detection of Gram-positive bacterial infection around protheses. J Bone Joint Surg Br 82-B, 1156–1161.
    [Google Scholar]
  34. Sadovskaya, I., Vinogradov, E., Li, J. & Jabbouri, S. ( 2004;). Structural elucidation of the extracellular and cell-wall teichoic acids of Staphylococcus epidermidis RP62A, a reference biofilm-positive strain. Carbohydr Res 339, 1467–1473.[CrossRef]
    [Google Scholar]
  35. Schroder, N. W., Morath, S., Alexander, C., Hamann, L., Hartung, T., Zahringer, U., Gobel, U. B., Weber, J. R. & Schumann, R. R. ( 2003;). Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278, 15587–15594.[CrossRef]
    [Google Scholar]
  36. Schwandner, R., Dziarski, R., Wesche, W., Rothe, M. & Kirschning, C. J. ( 1999;). Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274, 17406–17409.[CrossRef]
    [Google Scholar]
  37. Thiemermann, C. ( 2002;). Interactions between lipoteichoic acid and peptidoglycan from Staphylococcus aureus: a structural and functional analysis. Microbes Infect 4, 927–935.[CrossRef]
    [Google Scholar]
  38. Van Langevelde, P., Ravensbergen, E., Grashoff, P., Beekhuizen, H., Groeneveld, P. H. & van Dissel, J. T. ( 1999;). Antibiotic-induced cell wall fragments of Staphylococcus aureus increase endothelial chemokine secretion and adhesiveness for granulocytes. Antimicrob Agents Chemother 43, 2984–2989.
    [Google Scholar]
  39. Wang, J. E., Dahle, M. K., McDonald, M., Foster, S. J., Aasen, A. O. & Thiemermann, C. ( 2003;). Peptidoglycan and lipoteichoic acid in Gram-positive bacterial sepsis: receptors, signal transduction, biological effects, and synergism. Shock 20, 402–414.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45872-0
Loading
/content/journal/jmm/10.1099/jmm.0.45872-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error