1887

Abstract

To study the influence of normal associated microbiota on systemic immunological responses during experimental Chagas’ disease, germ-free and conventional NIH Swiss mice were infected with Y strain of . Although no statistical differences in mortality and parasitaemia were found, conventional mice showed IFN-γ, TNF-α and NO production ( < 0.05) by spleen cell cultures and higher blood levels of immunoglobulins of the IgG2a isotype ( < 0.05) when compared to their germ-free counterparts. Moreover, higher levels of IgG1 were also found in conventional animals. On the other hand, no differences in IL10 production were found between germ-free and conventional mice after infection ( < 0.05). Interestingly, spleen cell cultures from non-infected germ-free mice spontaneously produced higher levels of IL10 than cultures from conventional mice. Moreover, cultures from non-infected germ-free mice responded to antigens with IFN-γ production, contrary to cultures from conventional animals. In conclusion, the presence of the normal microbiota skews the immune response towards production of inflammatory cytokines during experimental infection with in mice. However, the increase in production of cytokines that is linked to resistance to this parasite did not alter the outcome of infection significantly, probably due to high virulence of the Y strain.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45657-0
2004-08-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/8/JM530805.html?itemId=/content/journal/jmm/10.1099/jmm.0.45657-0&mimeType=html&fmt=ahah

References

  1. Berg, R. D. ( 1996;). The indigenous gastrointestinal microflora. Trends Microbiol 4, 430–435.[CrossRef]
    [Google Scholar]
  2. Bonorino, C., Nardi, N. B., Zhang, X. & Wysocki, L. J. ( 1998;). Characteristics of the strong antibody response to mycobacterial Hsp70: a primary, T cell-dependent IgG response with no evidence of natural priming or γδT cell involvement. J Immunol 161, 5210–5216.
    [Google Scholar]
  3. Brener, Z. ( 1962;). Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop São Paulo 4, 389–396.
    [Google Scholar]
  4. Camargo, M. M., Andrade, A. C., Almeida, I. C., Travassos, L. R. & Gazzinelli, R. T. ( 1997;). Glycoconjugates isolated from Trypanosoma cruzi but not from Leishmania species membranes trigger nitric oxide synthesis as well as microbicidal activity in IFN-γ-primed macrophages. J Immunol 159, 6131–6139.
    [Google Scholar]
  5. Cardillo, F., Voltarelli, J. C., Reed, S. G. & Silva, J. S. ( 1996;). Regulation of Trypanosoma cruzi infection in mice by gamma interferon and interleukin 10: the role of NK cells. Infect Immun 64, 128–134.
    [Google Scholar]
  6. Cintra, I. P., Silva, M. E., Silva, M. E., Silva, M. E. C., Crocco-Afonso, L. C., Nicoli, J. R., Bambirra, E. A. & Vieira, E. C. ( 1998;). Influence of dietary protein content on Trypanosoma cruzi infection in germfree and conventional mice. Rev Inst Med Trop São Paulo 40, 355–362.
    [Google Scholar]
  7. Dobber, R., Hertogh-Huijbregts, A., Rozing, J., Bottomly, K. & Nagelkerken, L. ( 1992;). The involvement of the intestinal microflora in the expansion of CD4+ T cells with a naive phenotype in the periphery. Dev Immunol 2, 141–150.[CrossRef]
    [Google Scholar]
  8. Furarah, A. M., Crocco-Afonso, L. C., Silva, M. E. C., Silva, M. E., Silva, M. E., Bambirra, E. A., Vieira, E. C. & Nicoli, J. R. ( 1991;). Immune responses of germfree mice to experimental infection with Trypanosoma cruzi. Braz J Med Biol Res 24, 1223–1231.
    [Google Scholar]
  9. Gouet, P., Yvore, P., Naciri, M. & Contrepois, M. ( 1984;). Influence of digestive microflora on parasite development and the pathogenic effect of Eimeria ovinoidalis in the axenic, gnotoxenic and conventional lamb. Res Vet Sci 36, 21–23.
    [Google Scholar]
  10. Green, L., Wagner, D., Glogowski, J., Skipper, P., Wishnok, J. & Tannenbaum, S. ( 1982;). Analysis of nitrate, nitrite and [15N]nitrate in biological fluids. Anal Biochem 126, 131–138.[CrossRef]
    [Google Scholar]
  11. Harleman, J. H. & Meyer, R. C. ( 1984;). Life cycle of Isopora suis in gnotobiotic and conventionalized piglets. Vet Parasitol 17, 27–39.[CrossRef]
    [Google Scholar]
  12. Hoft, D. F., Schnapp, A. R., Eickhoff, C. S. & Roodman, S. T. ( 2000;). Involvement of CD4+ Th1 cells in systemic immunity protective against primary and secondary challenges with Trypanosoma cruzi. Infect Immun 68, 197–204.[CrossRef]
    [Google Scholar]
  13. Hori, S., Nomura, T. & Sakaguchi, S. ( 2003;). Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061.[CrossRef]
    [Google Scholar]
  14. Inagaki, H., Suzuki, T., Nomoto, K. & Yoshikai, Y. ( 1996;). Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin+ CD44+ T cells in sites of inflammation. Infect Immun 64, 3280–3287.
    [Google Scholar]
  15. Johnson, J. & Reid, W. M. ( 1973;). Ascaridia galli (Nematoda): development and survival in gnotobiotic chickens. Exp Parasitol 33, 95–99.[CrossRef]
    [Google Scholar]
  16. Julia, V., McSorley, S. S., Malherbe, L., Breittmayer, J. P., Girard-Pipau, F., Beck, A. & Glaichenhaus, N. ( 2000;). Priming by microbial antigens from the intestinal flora determines the ability of CD4+ T cells to rapidly secrete IL-4 in BALB/c mice infected with Leishmania major. J Immunol 165, 5637–5645.[CrossRef]
    [Google Scholar]
  17. Lee, W. T., Yin, X. M. & Vitetta, E. S. ( 1990;). Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells. J Immunol 144, 3288–3295.
    [Google Scholar]
  18. MacDonald, T. T. & Carter, P. B. ( 1979;). Requirement for a bacterial flora before mice generate cells capable of mediating the delayed hypersensitivity reaction to sheep red blood cells, J Immunol 122, 2624–2629.
    [Google Scholar]
  19. Martins, W. A., Melo, A. L., Nicoli, J. R., Cara, D. C., Carvalho, M. A. R., Lana, M. A., Vieira, E. C. & Farias, L. M. ( 2000;). A method of decontaminating Strongyloides venezuelensis larvae for the study of strongyloidiasis in germ-free and conventional mice. J Med Microbiol 49, 387–390.
    [Google Scholar]
  20. Michailowsky, V., Silva, N. M., Rocha, C. D., Vieira, L. Q., Lannes-Vieira, J. & Gazzinelli, R. T. ( 2001;). Pivotal role of interleukin-12 and interferon-γ axis in controlling tissue parasitism and inflammation in the heart and central nervous system during Trypanosoma cruzi infection. Am J Pathol 159, 1723–1733.[CrossRef]
    [Google Scholar]
  21. National Research Council ( 1996;). Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academy Press.
  22. Oliveira, L. C. B., Lafaille, M. A. C., Lima, G. M. C. A. & Abrahamsohn, I. A. ( 1996;). Antigen-specific IL-4- and IL-10-secreting CD4+ lymphocytes increase in vivo susceptibility to Trypanosoma cruzi infection. Cell Immunol 170, 41–53.[CrossRef]
    [Google Scholar]
  23. Owen, D. ( 1975;). Eimeria falciformis (Eimer, 1870) in specific pathogen free and gnotobiotic mice. Parasitology 71, 293–303.[CrossRef]
    [Google Scholar]
  24. Park, S. H., Benlagha, K., Lee, D., Balish, E. & Bendelac, A. ( 2000;). Unaltered phenotype, tissue distribution and function of Vα14+ NKT cells in germ-free mice. Eur J Immunol 30, 620–625.[CrossRef]
    [Google Scholar]
  25. Pasare, C. & Medzhitov, R. ( 2003;). Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036.[CrossRef]
    [Google Scholar]
  26. Pedrosa, M. L., Nicoli, J. R., Silva, M. E., Silva, M. E., Silva, M. E. C., Vieira, L. Q., Bambirra, E. A. & Vieira, E. C. ( 1993;). The effect of iron nutritional status on Trypanosoma cruzi infection in germfree and conventional mice. Comp Biochem Physiol 106, 813–821.[CrossRef]
    [Google Scholar]
  27. Phillips, B. P. & Wolfe, P. A. ( 1959;). The use of germfree guinea pigs in studies on the microbial interrelationships in amoebiasis. Ann N Y Acad Sci 78, 308–314.
    [Google Scholar]
  28. Powrie, F. & Maloy, K. J. ( 2003;). Immunology.Regulating the regulators. Science 299, 1030–1031.[CrossRef]
    [Google Scholar]
  29. Price, P. W. & Cerny, J. ( 1999;). Characterization of CD4+ T cells in mouse bone marrow.I. Increased activated/memory phenotype and altered TCR Vβ repertoire. Eur J Immunol 29, 1051–1056.[CrossRef]
    [Google Scholar]
  30. Przyjalkowski, Z. W. & Wescott, R. B. ( 1969;). Trichinella spiralis: establishment in gnotobiotic mice affected by Bacillus mesentericus, Bacillus subtilis and Pseudomonas aeruginosa. Exp Parasitol 25, 8–12.[CrossRef]
    [Google Scholar]
  31. Reid, W. M. & Botero, H. ( 1967;). Growth of the cestode Raillietina cesticillus in bacteria-free chickens. Exp Parasitol 21, 149–153.[CrossRef]
    [Google Scholar]
  32. Ropert, C., Ferreira, L. R., Campos, M. A. & 7 other authors ( 2002;). Macrophage signaling by glycosylphosphatidylinositol-anchored mucin-like glycoproteins derived from Trypanosoma cruzi trypomastigotes. Microbes Infect 4, 1015–1025.[CrossRef]
    [Google Scholar]
  33. Rutter, J. M. & Beer, R. J. S. ( 1975;). Synergism between Trichuris suis and the microbial flora of the large intestine causing dysentery in pigs. Infect Immun 11, 395–404.
    [Google Scholar]
  34. Salkowski, C. A., Bartizal, K. F., Balish, M. J. & Balish, E. ( 1987;). Colonization and pathogenesis of Cryptococcus neoformans in gnotobiotic mice. Infect Immun 55, 2000–2005.
    [Google Scholar]
  35. Santos, C. F., Silva, M. E., Silva, M. E., Silva, M. E. C., Nicoli, J. R., Crocco-Afonso, L. C., Santos, J. E., Bambirra, E. A. & Vieira, E. C. ( 1992;). Effect of essential fatty acid deficient diet on experimental infection with Trypanosoma cruzi in germfree and conventional mice. Braz J Med Biol Res 25, 795–803.
    [Google Scholar]
  36. Silva, M. E., Evangelista, E. A., Nicoli, J. R., Bambirra, E. A. & Vieira, E. C. ( 1987;). American trypanosomiasis (Chagas’ disease) in conventional and germfree rats and mice. Rev Inst Med Trop São Paulo 29, 284–288.[CrossRef]
    [Google Scholar]
  37. Silva, J. S., Vespa, G. N. R., Cardoso, M. A. G., Aliberti, J. C. & Cunha, F. Q. ( 1995;). Tumor necrosis factor alpha mediates resistance to Trypanosoma cruzi in mice by inducing nitric oxide production in infected gamma-interferon-activated macrophages. Infect Immun 63, 4862–4867.
    [Google Scholar]
  38. Stetson, D. B., Mohrs, M., Mallet-Designe, V., Teyton, L. & Locksley, R. M. ( 2002;). Rapid expansion and IL-4 expression by Leishmania-specific naive helper T cells in vivo. Immunity 17, 191–200.[CrossRef]
    [Google Scholar]
  39. Torres, M. F., Uetanabaro, A. P. T., Costa, A. F., Alves, C. A., Farias, L. M., Bambirra, E. A., Penna, F. J., Vieira, E. C. & Nicoli, J. R. ( 2000;). Influence of bacteria from the duodenal microbiota of patients with symptomatic giardiasis on the pathogenicity of Giardia duodenalis in gnotoxenic mice. J Med Microbiol 49, 209–215.
    [Google Scholar]
  40. Vespa, G. N. R., Cunha, F. Q. & Silva, J. S. ( 1994;). Nitric oxide is involved in the control of Trypanosoma cruzi-induced parasitemia and directly kills parasite in vitro. Infect Immun 62, 5177–5182.
    [Google Scholar]
  41. Visco, R. J. & Burns, W. C. ( 1972;). Eimeria tenella in bacteria-free and conventionalized chicks. J Parasitol 58, 323–331.[CrossRef]
    [Google Scholar]
  42. Wescott, R. B. ( 1968;). Experimental Nematospiroides dubius infection in germfree and conventional mice. Exp Parasitol 22, 245–249.[CrossRef]
    [Google Scholar]
  43. Wescott, R. B. & Todd, A. C. ( 1964;). A comparison of the development of Nippostrongylus brasiliensis in germ-free and conventional mice. J Parasitol 50, 138–143.[CrossRef]
    [Google Scholar]
  44. Wills-Karp, M., Santeliz, J. & Karp, C. L. ( 2001;). The germless theory of allergic disease: revisiting the hygiene hypothesis. Nature Rev Immunol 1, 69–75.[CrossRef]
    [Google Scholar]
  45. Wilson, K. H. ( 1995;). Ecological concepts in the control of pathogens. In Virulence Mechanisms of Bacterial Pathogens, pp. 245–256. Edited by J. A. Roth. Washington, DC: American Society for Microbiology.
  46. Yazdanbakhsh, M., Kremsner, P. G. & van Ree, R. ( 2002;). Allergy, parasites, and the hygiene hypothesis. Science 296, 490–494.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45657-0
Loading
/content/journal/jmm/10.1099/jmm.0.45657-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error