1887

Abstract

In this study, the suitability of two repetitive-element-based PCR (rep-PCR) assays, enterobacterial repetitive intergenic consensus (ERIC)-PCR and BOX-PCR, to rapidly characterize strains isolated from patients with cystic fibrosis (CF) was examined. ERIC-PCR utilizes paired sequence-specific primers and BOX-PCR a single primer that target highly conserved repetitive elements in the genome. Using these rep-PCR assays, 163 isolates cultured from sputa collected from 50 patients attending an adult CF clinic and 50 children attending a paediatric CF clinic were typed. The results of the rep-PCR assays were compared to the results of PFGE. All three assays revealed the presence of six major clonal groups shared by multiple patients attending either of the CF clinics, with the dominant clonal group infecting 38 % of all patients. This dominant clonal group was not related to the dominant clonal group detected in Sydney or Melbourne (pulsotype 1), nor was it related to the dominant groups detected in the UK. In all, PFGE and rep-PCR identified 58 distinct clonal groups, with only three of these shared between the two clinics. The results of this study showed that both ERIC-PCR and BOX-PCR are rapid, highly discriminatory and reproducible assays that proved to be powerful surveillance screening tools for the typing of clinical isolates recovered from patients with CF.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.45611-0
2004-11-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/11/JM531106.html?itemId=/content/journal/jmm/10.1099/jmm.0.45611-0&mimeType=html&fmt=ahah

References

  1. Abd-El-Haleem, D., Moawad, H., Zaki, E. A. & Zaki, S. ( 2002;). Molecular characterization of phenol-degrading bacteria isolated from different Egyptian ecosystems. Microb Ecol 43, 217–224.[CrossRef]
    [Google Scholar]
  2. Anthony, M., Rose, B., Pegler, M. B. & 8 other authors ( 2002;). Genetic analysis of Pseudomonas aeruginosa isolates from the sputa of Australian adult cystic fibrosis patients. J Clin Microbiol 40, 2772–2778.[CrossRef]
    [Google Scholar]
  3. Armstrong, D. S., Nixon, G. M., Carzino, R., Bigham, A., Carlin, J. B., Robins-Browne, R. M. & Grimwood, K. ( 2002;). Detection of a widespread clone of Pseudomonas aeruginosa in a pediatric cystic fibrosis clinic. Am J Respir Crit Care Med 166, 983–987.[CrossRef]
    [Google Scholar]
  4. Bertrand, X., Thouverez, M., Talon, D., Boillot, A., Capellier, G., Floriot, C. & Helias, J. P. ( 2001;). Endemicity, molecular diversity and colonisation routes of Pseudomonas aeruginosa in intensive care units. Intensive Care Med 27, 1263–1268.[CrossRef]
    [Google Scholar]
  5. Breitenstein, S., Walter, S., Bosshammer, J., Romling, U. & Tummler, B. ( 1997;). Direct sputum analysis of Pseudomonas aeruginosa macrorestriction fragment genotypes in patients with cystic fibrosis. Med Microbiol Immunol (Berl) 186, 93–99.[CrossRef]
    [Google Scholar]
  6. Cho, J. C. & Tiedje, J. M. ( 2000;). Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66, 5448–5456.[CrossRef]
    [Google Scholar]
  7. Dawson, S. L., Fry, J. C. & Dancer, B. N. ( 2002;). A comparative evaluation of five typing techniques for determining the diversity of fluorescent pseudomonads. J Microbiol Methods 50, 9–22.[CrossRef]
    [Google Scholar]
  8. De Vos, D., Lim, A., Jr, Pirnay, J. P., Struelens, M., van den Velde, C., Duinslaeger, L., van der Kelen, A. & Cornelis, P. ( 1997;). Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, oprI and oprL. J Clin Microbiol 35, 1295–1299.
    [Google Scholar]
  9. Douglas, M. W., Mulholland, K., Denyer, V. & Gottlieb, T. ( 2001;). Multi-drug resistant Pseudomonas aeruginosa outbreak in a burns unit – an infection control study. Burns 27, 131–135.[CrossRef]
    [Google Scholar]
  10. Grundmann, H., Schneider, C., Hartung, D., Daschner, F. D. & Pitt, T. L. ( 1995;). Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa. J Clin Microbiol 33, 528–534.
    [Google Scholar]
  11. Hoogkamp-Korstanje, J. A., Meis, J. F., Kissing, J., van der Laag, J. & Melchers, W. J. ( 1995;). Risk of cross-colonization and infection by Pseudomonas aeruginosa in a holiday camp for cystic fibrosis patients. J Clin Microbiol 33, 572–575.
    [Google Scholar]
  12. Hulton, C. S., Higgins, C. F. & Sharp, P. M. ( 1991;). ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5, 825–834.[CrossRef]
    [Google Scholar]
  13. Hutchison, M. L. & Govan, J. R. ( 1999;). Pathogenicity of microbes associated with cystic fibrosis. Microbes Infect 1, 1005–1014.[CrossRef]
    [Google Scholar]
  14. Jersek, B., Gilot, P., Gubina, M., Klun, N., Mehle, J., Tcherneva, E., Rijpens, N. & Herman, L. ( 1999;). Typing of Listeria monocytogenes strains by repetitive element sequence-based PCR. J Clin Microbiol 37, 103–109.
    [Google Scholar]
  15. Jones, A. M., Govan, J. R., Doherty, C. J., Dodd, M. E., Isalska, B. J., Stanbridge, T. N. & Webb, A. K. ( 2001;). Spread of a multiresistant strain of Pseudomonas aeruginosa in an adult cystic fibrosis clinic. Lancet 358, 557–558.[CrossRef]
    [Google Scholar]
  16. Kang, H. P. & Dunne, W. M. ( 2003;). Stability of repetitive-sequence PCR patterns with respect to culture age and subculture frequency. J Clin Microbiol 41, 2694–2696.[CrossRef]
    [Google Scholar]
  17. Lau, Y. J., Liu, P. Y., Hu, B. S., Shyr, J. M., Shi, Z. Y., Tsai, W. S., Lin, Y. H. & Tseng, C. Y. ( 1995;). DNA fingerprinting of Pseudomonas aeruginosa serotype O11 by enterobacterial repetitive intergenic consensus-polymerase chain reaction and pulsed-field gel electrophoresis. J Hosp Infect 31, 61–66.[CrossRef]
    [Google Scholar]
  18. Louws, F. J., Fulbright, D. W., Stephens, C. T. & de Bruijn, F. J. ( 1994;). Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl Environ Microbiol 60, 2286–2295.
    [Google Scholar]
  19. Malathum, K., Singh, K. V., Weinstock, G. M. & Murray, B. E. ( 1998;). Repetitive sequence-based PCR versus pulsed-field gel electrophoresis for typing of Enterococcus faecalis at the subspecies level. J Clin Microbiol 36, 211–215.
    [Google Scholar]
  20. Martin, B., Humbert, O., Camara, M. & 10 other authors ( 1992;). A highly conserved repeated DNA element located in the chromosome of Streptococcus pneumoniae. Nucleic Acids Res 20, 3479–3483.[CrossRef]
    [Google Scholar]
  21. McCallum, S. J., Corkill, J., Gallagher, M., Ledson, M. J., Hart, C. A. & Walshaw, M. J. ( 2001;). Superinfection with a transmissible strain of Pseudomonas aeruginosa in adults with cystic fibrosis chronically colonised by P.aeruginosa. Lancet 358, 558–560.[CrossRef]
    [Google Scholar]
  22. McCallum, S. J., Gallagher, M. J., Corkill, J. E., Hart, C. A., Ledson, M. J. & Walshaw, M. J. ( 2002;). Spread of an epidemic Pseudomonas aeruginosa strain from a patient with cystic fibrosis (CF) to non-CF relatives. Thorax 57, 559–560.[CrossRef]
    [Google Scholar]
  23. McSpadden Gardener, B. B., Schroeder, K. L., Kalloger, S. E., Raaijmakers, J. M., Thomashow, L. S. & Weller, D. M. ( 2000;). Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl Environ Microbiol 66, 1939–1946.[CrossRef]
    [Google Scholar]
  24. O'Carroll, M. R., Syrmis, M. W., Wainwright, C. E., Greer, R. M., Mitchell, P., Coulter, C., Sloots, T. P., Nissen, M. D. & Bell, S. C. ( 2004;). Clonal strains of Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units. Eur Respir J 24, 101–106.[CrossRef]
    [Google Scholar]
  25. Olive, P. B. D. ( 1999;). Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37, 1661–1669.
    [Google Scholar]
  26. Patton, T. G., Katz, S., Sobieski, R. J. & Crupper, S. S. ( 2001;). Genotyping of clinical Serratia marcescens isolates: a comparison of PCR-based methods. FEMS Microbiol Lett 194, 19–25.[CrossRef]
    [Google Scholar]
  27. Pfaller, M. A. ( 1999;). Molecular epidemiology in the care of patients. Arch Pathol Lab Med 123, 1007–1010.
    [Google Scholar]
  28. Romling, U. & Tummler, B. ( 2000;). Achieving 100% typeability of Pseudomonas aeruginosa by pulsed-field gel electrophoresis. J Clin Microbiol 38, 464–465.
    [Google Scholar]
  29. Spencker, F. B., Haupt, S., Claros, M. C., Walter, S., Lietz, T., Schille, R. & Rodloff, A. C. ( 2000;). Epidemiologic characterization of Pseudomonas aeruginosa in patients with cystic fibrosis. Clin Microbiol Infect 6, 600–607.[CrossRef]
    [Google Scholar]
  30. Struelens, M. J. ( 1998;). Molecular epidemiologic typing systems of bacterial pathogens: current issues and perspectives. Memorias Inst Oswaldo Cruz 93, 581–585.[CrossRef]
    [Google Scholar]
  31. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995;). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  32. Tenover, F. C., Arbeit, R. D. & Goering, R. V. ( 1997;). How to select and interpret molecular strain typing methods for epidemiological studies of bacterial infections: a review for healthcare epidemiologists.Molecular Typing Working Group of the Society for Healthcare Epidemiology of America. Infect Control Hosp Epidemiol 18, 426–439.[CrossRef]
    [Google Scholar]
  33. Tyler, K. D., Wang, G., Tyler, S. D. & Johnson, W. M. ( 1997;). Factors affecting reliability and reproducibility of amplification-based DNA fingerprinting of representative bacterial pathogens. J Clin Microbiol 35, 339–346.
    [Google Scholar]
  34. Versalovic, J., Koeuth, T. & Lupski, J. R. ( 1991;). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19, 6823–6831.[CrossRef]
    [Google Scholar]
  35. Whiteley, A. S., Wiles, S., Lilley, A. K., Philp, J. & Bailey, M. J. ( 2001;). Ecological and physiological analyses of Pseudomonad species within a phenol remediation system. J Microbiol Methods 44, 79–88.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.45611-0
Loading
/content/journal/jmm/10.1099/jmm.0.45611-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error