1887

Abstract

The major risk factor for infection (CDI) is the use of antibiotics owing to the disruption of the equilibrium of the host gut microbiota. To preserve the beneficial resident probiotic bacteria during infection treatment, the use of molecules with selective antibacterial activity enhances the efficacy by selectively removing . One of them is the plant alkaloid 8-hydroxyquinoline (8HQ), which has been shown to selectively inhibit clostridia without repressing bifidobacteria. Selective antimicrobial activity is generally tested by culture techniques of individual bacterial strains. However, the main limitation of these techniques is the inability to describe differential growth dynamics of more bacterial strains in co-culture within the same experiment. In the present study, we combined fluorescent hybridization and flow cytometry to describe the changes in active and non-active cells of a mixed culture formed by the opportunistic pathogen CECT 531 and the beneficial subsp. CCMDMND BL1 after exposure to 8HQ. It was observed that without 8HQ, the proportion of both strains was almost equal, oscillating between 22.7 and 77.9 % during a time lapse of 12 h, whereas with 8HQ the proportion of active decreased after 4 h, and persisted only between 8.8 and 17.5 %. In contrast, bifidobacterial growth was not disturbed by 8HQ. The results of this study showed the selective inhibitory effect of 8HQ on clostridial and bifidobacterial growth dynamics, and the potential of this compound for the development of selective agents to control CDIs.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.080796-0
2014-12-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/12/1663.html?itemId=/content/journal/jmm/10.1099/jmm.0.080796-0&mimeType=html&fmt=ahah

References

  1. Andersen A.. ( 2006;). Final amended report on the safety assessment of oxyquinoline and oxyquinoline sulfate as used in cosmetics. . Int J Toxicol 25: (Suppl 1), 1–9. [CrossRef][PubMed]
    [Google Scholar]
  2. Ashelford K. E., Weightman A. J., Fry J. C.. ( 2002;). primrose: a computer program for generating and estimating the phylogenetic range of 16S rRNA oligonucleotide probes and primers in conjunction with the RDP-II database. . Nucleic Acids Res 30:, 3481–3489. [CrossRef][PubMed]
    [Google Scholar]
  3. Chobot V., Drage S., Hadacek F.. ( 2011;). Redox properties of 8-quinolinol and implications for its mode of action. . Nat Prod Commun 6:, 597–602.[PubMed]
    [Google Scholar]
  4. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T.. & other authors ( 2009;). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. . Nucleic Acids Res 37: (Suppl. 1), D141–D145. [CrossRef][PubMed]
    [Google Scholar]
  5. Cos P., Vlietinck A. J., Berghe D. V., Maes L.. ( 2006;). Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. . J Ethnopharmacol 106:, 290–302. [CrossRef][PubMed]
    [Google Scholar]
  6. D’Auria G., Peris-Bondia F., Džunková M., Mira A., Collado M. C., Latorre A., Moya A.. ( 2013;). Active and secreted IgA-coated bacterial fractions from the human gut reveal an under-represented microbiota core. . Sci Rep 3:, 3515.[PubMed]
    [Google Scholar]
  7. DeLong E. F., Wickham G. S., Pace N. R.. ( 1989;). Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. . Science 243:, 1360–1363. [CrossRef][PubMed]
    [Google Scholar]
  8. Ellis B., Haaland P., Hahne F., Le Meur N., Gopalakrishnan N., Spidle J.. ( 2012a;). flowCore: basic structures for flow cytometry data. . http://www.bioconductor.org/packages/release/bioc/html/flowCore.html
  9. Ellis B., Gentleman R., Hahne F., Le Meur N., Sarkar D.. ( 2012b;). Visualization for flow cytometry. . http://www.bioconductor.org/packages/release/bioc/html/flowViz.html
  10. Fernández-Bachiller M. I., Pérez C., González-Muñoz G. C., Conde S., López M. G., Villarroya M., García A. G., Rodríguez-Franco M. I.. ( 2010;). Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. . J Med Chem 53:, 4927–4937. [CrossRef][PubMed]
    [Google Scholar]
  11. Fraser R. S. S., Creanor J.. ( 1975;). The mechanism of inhibition of ribonucleic acid synthesis by 8-hydroxyquinoline and the antibiotic lomofungin. . Biochem J 147:, 401–410.[PubMed]
    [Google Scholar]
  12. Fuchs B. M., Wallner G., Beisker W., Schwippl I., Ludwig W., Amann R.. ( 1998;). Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. . Appl Environ Microbiol 64:, 4973–4982.[PubMed]
    [Google Scholar]
  13. Goorhuis A., Bakker D., Corver J., Debast S. B., Harmanus C., Notermans D. W., Bergwerff A. A., Dekker F. W., Kuijper E. J.. ( 2008;). Emergence of Clostridium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. . Clin Infect Dis 47:, 1162–1170. [CrossRef][PubMed]
    [Google Scholar]
  14. Hecht D. W.. ( 1999;). Antimicrobial agents and susceptibility testing: susceptibility testing of anaerobic bacteria. . In Manual of Clinical Microbiology, , 7th edn., pp. 1555–1563. Edited by Murray P. R., Baron E. J., Pfaller M. A., Tenover F. C., Yolken R. H... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  15. Kim Y. M., Jeong E. Y., Lim J. H., Lee H. S.. ( 2006;). Antimicrobial effects of 8-quinolinol. . Food Sci Biotechnol 15:, 817–819.
    [Google Scholar]
  16. Kim J., Shaklee J. F., Smathers S., Prasad P., Asti L., Zoltanski J., Dul M., Nerandzic M., Coffin S. E.. & other authors ( 2012;). Risk factors and outcomes associated with severe Clostridium difficile infection in children. . Pediatr Infect Dis J 31:, 134–138. [CrossRef][PubMed]
    [Google Scholar]
  17. Müller S., Babel W.. ( 2003;). Analysis of bacterial DNA patterns – an approach for controlling biotechnological processes. . J Microbiol Methods 55:, 851–858. [CrossRef][PubMed]
    [Google Scholar]
  18. Musgrave C. R., Bookstaver P. B., Sutton S. S., Miller A. D.. ( 2011;). Use of alternative or adjuvant pharmacologic treatment strategies in the prevention and treatment of Clostridium difficile infection. . Int J Infect Dis 15:, e438–e448. [CrossRef][PubMed]
    [Google Scholar]
  19. Novakova J., Vlkova E., Bonusova B., Rada V., Kokoska L.. ( 2013;). In vitro selective inhibitory effect of 8-hydroxyquinoline against bifidobacteria and clostridia. . Anaerobe 22:, 134–136. [CrossRef][PubMed]
    [Google Scholar]
  20. Peris-Bondia F., Latorre A., Artacho A., Moya A., D’Auria G.. ( 2011;). The active human gut microbiota differs from the total microbiota. . PLoS ONE 6:, e22448. [CrossRef][PubMed]
    [Google Scholar]
  21. Prachayasittikul V., Prachayasittikul S., Ruchirawat S., Prachayasittikul V.. ( 2013;). 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. . Drug Des Devel Ther 7:, 1157–1178. [CrossRef][PubMed]
    [Google Scholar]
  22. Puccio G., Cajozzo C., Meli F., Rochat F., Grathwohl D., Steenhout P.. ( 2007;). Clinical evaluation of a new starter formula for infants containing live Bifidobacterium longum BL999 and prebiotics. . Nutrition 23:, 1–8. [CrossRef][PubMed]
    [Google Scholar]
  23. Rada V., Petr J.. ( 2000;). A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. . J Microbiol Methods 43:, 127–132. [CrossRef][PubMed]
    [Google Scholar]
  24. Schellenberg J., Smoragiewicz W., Karska-Wysocki B.. ( 2006;). A rapid method combining immunofluorescence and flow cytometry for improved understanding of competitive interactions between lactic acid bacteria (LAB) and methicillin-resistant S. aureus (MRSA) in mixed culture. . J Microbiol Methods 65:, 1–9. [CrossRef][PubMed]
    [Google Scholar]
  25. Schuijt T. J., van der Poll T., de Vos W. M., Wiersinga W. J.. ( 2013;). The intestinal microbiota and host immune interactions in the critically ill. . Trends Microbiol 21:, 221–229. [CrossRef][PubMed]
    [Google Scholar]
  26. Selinger C. P., Bell A., Cairns A., Lockett M., Sebastian S., Haslam N.. ( 2013;). Probiotic VSL#3 prevents antibiotic-associated diarrhoea in a double-blind, randomized, placebo-controlled clinical trial. . J Hosp Infect 84:, 159–165. [CrossRef][PubMed]
    [Google Scholar]
  27. Silva F., Ferreira S., Queiroz J. A., Domingues F. C.. ( 2011;). Coriander (Coriandrum sativum L.) essential oil: its antibacterial activity and mode of action evaluated by flow cytometry. . J Med Microbiol 60:, 1479–1486. [CrossRef][PubMed]
    [Google Scholar]
  28. Srisung S., Suksrichavalit T., Prachayasittikul S., Ruchirawat S., Prachayasittikul V.. ( 2013;). Antimicrobial activity of 8-hydroxyquinoline and transition metal complexes. . Int J Pharm 9:, 170–175. [CrossRef]
    [Google Scholar]
  29. Thomas J. C., Desrosiers M., St-Pierre Y., Lirette P., Bisaillon J. G., Beaudet R., Villemur R.. ( 1997;). Quantitative flow cytometric detection of specific microorganisms in soil samples using rRNA targeted fluorescent probes and ethidium bromide. . Cytometry 27:, 224–232. [CrossRef][PubMed]
    [Google Scholar]
  30. Vlková E., Nevoral J., Jencikova B., Kopecný J., Godefrooij J., Trojanová I., Rada V.. ( 2005;). Detection of infant faecal bifidobacteria by enzymatic methods. . J Microbiol Methods 60:, 365–373. [CrossRef][PubMed]
    [Google Scholar]
  31. Wallner G., Amann R., Beisker W.. ( 1993;). Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. . Cytometry 14:, 136–143. [CrossRef][PubMed]
    [Google Scholar]
  32. Wickham H., Chang W.. ( 2012;). ggplot2: an implementation of the grammar of graphics. . http://cran.r-project.org/web/packages/ggplot2/index.html
  33. Yang Y. J., Park J. H., Lee H. S.. ( 2013;). Isolation of 8-hydroxyquinoline from Sebastiania corniculata and antimicrobial activity against food-borne bacteria. . J Korean Soc Appl Biol Chem 56:, 763–766. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.080796-0
Loading
/content/journal/jmm/10.1099/jmm.0.080796-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error