1887

Abstract

In this study, the species diversity of staphylococci with inducible resistance to macrolides, lincosamides and streptogramin B (MLS) isolated from clinical samples, sewage and river water was investigated. Inducible clindamycin resistance was tested using a D-test and macrodilution assays. Inducible cross-resistance (iMLS phenotype) was examined by PCR of gene classes , , , , , , and . Although was the most frequently detected resistance gene in iMLS phenotypes of environmental staphylococci (61.2 %), resistance genes encoding iMLS were more diverse than in staphylococci from hospital samples. In 22.4 % of iMLS staphylococci from aquatic environments, none of the eight tested genes was found. Those isolates and -expressing displayed low erythromycin MICs (3–16 µg ml) compared with -positive environmental staphylococci (≥256 µg ml). In contrast to clinical isolates with clearly defined resistance behaviour, resistance patterns against MLS and MICs for clindamycin of environmental isolates were more diverse. Although the abundance of iMLS staphylococci in the aquatic environment was lower than in staphylococci from hospital samples, the diversity of resistance genes encoding this phenotype seemed to be higher. Oleandomycin is the best marker to correlate iMLS phenotype and the respective gene. The phenotypical behaviour of environmental isolates may differ from the resistance pattern of clinical iMLS staphylococci expressing or , and this should be considered for successful treatment of infections.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.077081-0
2014-11-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/11/1446.html?itemId=/content/journal/jmm/10.1099/jmm.0.077081-0&mimeType=html&fmt=ahah

References

  1. CLSI ( 2011;). Performance Standards for Antimicrobial Susceptibility Testing; 21st Informational Supplement. Document M100–S2. . Wayne, PA: : Clinical and Laboratory Standards Institute;.
  2. Daurel C., Huet C., Dhalluin A., Bes M., Etienne J., Leclercq R.. ( 2008;). Differences in potential for selection of clindamycin-resistant mutants between inducible erm(A) and erm(C) Staphylococcus aureus genes. . J Clin Microbiol 46:, 546–550. [CrossRef][PubMed]
    [Google Scholar]
  3. Delialioglu N., Aslan G., Ozturk C., Baki V., Sen S., Emekdas G.. ( 2005;). Inducible clindamycin resistance in staphylococci isolated from clinical samples. . Jpn J Infect Dis 58:, 104–106.[PubMed]
    [Google Scholar]
  4. Deutsche Industrie Norm ( 2011;). DIN 58940. Empfindlichkeitsprüfung von mikrobiellen Krankheitserregern gegen Chemotherapeutika. . Berlin:: Deutsches Institut für Normung e.V;.
  5. Di Modugno V., Guerrini M., Shah S., Hamilton-Miller J.. ( 2002;). Low level resistance to oleandomycin as a marker of ermA in staphylococci. . J Antimicrob Chemother 49:, 425–427. [CrossRef][PubMed]
    [Google Scholar]
  6. Faria C., Vaz-Moreira I., Serapicos E., Nunes O. C., Manaia C. M.. ( 2009;). Antibiotic resistance in coagulase negative staphylococci isolated from wastewater and drinking water. . Sci Total Environ 407:, 3876–3882. [CrossRef][PubMed]
    [Google Scholar]
  7. Feßler A., Scott C., Kadlec K., Ehricht R., Monecke S., Schwarz S.. ( 2010;). Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. . J Antimicrob Chemother 65:, 619–625. [CrossRef][PubMed]
    [Google Scholar]
  8. Gherardi G., De Florio L., Lorino G., Fico L., Dicuonzo G.. ( 2009;). Macrolide resistance genotypes and phenotypes among erythromycin-resistant clinical isolates of Staphylococcus aureus and coagulase-negative staphylococci, Italy. . FEMS Immunol Med Microbiol 55:, 62–67. [CrossRef][PubMed]
    [Google Scholar]
  9. Gul H. C., Kilic A., Guclu A. U., Bedir O., Orhon M., Basustaoglu A. C.. ( 2008;). Macrolide-lincosamide-streptogramin B resistant phenotypes and genotypes for methicillin-resistant Staphylococcus aureus in Turkey, from 2003 to 2006. . Pol J Microbiol 57:, 307–312.[PubMed]
    [Google Scholar]
  10. Hamilton-Miller J. M. T., Shah S.. ( 2000;). Patterns of phenotypic resistance to the macrolide-lincosamide-ketolide-streptogramin group of antibiotics in staphylococci. . J Antimicrob Chemother 46:, 941–949. [CrossRef][PubMed]
    [Google Scholar]
  11. Hauschild T., Schwarz S.. ( 2010;). Macrolide resistance in Staphylococcus spp. from free-living small mammals. . Vet Microbiol 144:, 530–531. [CrossRef][PubMed]
    [Google Scholar]
  12. Heß S., Gallert C.. ( 2014;). Demonstration of staphylococci with inducible macrolide-lincosamide-streptogramin B (MLSB) resistance in sewage and river water and of the capacity of anhydroerythromycin to induce MLSB. . FEMS Microbiol Ecol 88:, 48–59. [CrossRef][PubMed]
    [Google Scholar]
  13. Koike S., Aminov R. I., Yannarell A. C., Gans H. D., Krapac I. G., Chee-Sanford J. C., Mackie R. I.. ( 2010;). Molecular ecology of macrolide-lincosamide-streptogramin B methylases in waste lagoons and subsurface waters associated with swine production. . Microb Ecol 59:, 487–498. [CrossRef][PubMed]
    [Google Scholar]
  14. Le Bouter A., Leclercq R., Cattoir V.. ( 2011;). Molecular basis of resistance to macrolides, lincosamides and streptogramins in Staphylococcus saprophyticus clinical isolates. . Int J Antimicrob Agents 37:, 118–123. [CrossRef][PubMed]
    [Google Scholar]
  15. Leclercq R.. ( 2002;). Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. . Clin Infect Dis 34:, 482–492. [CrossRef][PubMed]
    [Google Scholar]
  16. Lina G., Quaglia A., Reverdy M.-E., Leclercq R., Vandenesch F., Etienne J.. ( 1999;). Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. . Antimicrob Agents Chemother 43:, 1062–1066.[PubMed]
    [Google Scholar]
  17. Lüthje P., Schwarz S.. ( 2006;). Antimicrobial resistance of coagulase-negative staphylococci from bovine subclinical mastitis with particular macrolide-lincosamide resistance phenotypes and genotypes. . J Antimicrob Chemother 57:, 966–969. [CrossRef][PubMed]
    [Google Scholar]
  18. Martineau F., Picard F. J., Ke D., Paradis S., Roy P. H., Ouellette M., Bergeron M. G.. ( 2001;). Development of a PCR assay for identification of staphylococci at genus and species levels. . J Clin Microbiol 39:, 2541–2547. [CrossRef][PubMed]
    [Google Scholar]
  19. Schwendener S., Perreten V.. ( 2012;). New MLSB resistance gene erm(43) in Staphylococcus lentus.. Antimicrob Agents Chemother 56:, 4746–4752. [CrossRef][PubMed]
    [Google Scholar]
  20. Triebskorn R., Amler K., Blaha L., Gallert C., Giebner S., Güde H., Henneberg A., Hess S., Hetzenauer H.. & other authors ( 2013;). SchussenAktivplus: reduction of micropollutants and of potentially pathogenic bacteria for further water quality improvement of the river Schussen, a tributary of Lake Constance, Germany. . Environ Sci Eur 25:, 2. [CrossRef]
    [Google Scholar]
  21. Wendlandt S., Feßler A. T., Monecke S., Ehricht R., Schwarz S., Kadlec K.. ( 2013;). The diversity of antimicrobial resistance genes among staphylococci of animal origin. . Int J Med Microbiol 303:, 338–349. [CrossRef][PubMed]
    [Google Scholar]
  22. Witte W., Altiner A., Altmann D., Berner R., Bölt U., Brodhun B., Brunkhorst F. M., Chaberny I. F., Cuny C.. & other authors ( 2011;). GERMAP 2010 – Antibiotika-Resistenz und –Verbrauch, Bericht über den Antibiotikaverbrauch und die Verbreitung von Antibiotikaresistenzen in der Human- und Veterinärmedizin in Deutschland, Antiinfectives Intelligence-Gesellschaft für klinisch-mikrobiologische Forschung und Kommunikation mbH. Germany:: Rheinbach;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.077081-0
Loading
/content/journal/jmm/10.1099/jmm.0.077081-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error