1887

Abstract

Human papillomavirus (HPV) 16 genome integration into the host chromosome is a crucial event during the life cycle of the virus and a major step towards carcinogenesis. The integration of HPV16 DNA promotes a constitutive high expression level of E6 and E7 oncoproteins, resulting in the extensive proliferation of the infected epithelial cells. In the present report the physical status of the HPV16 genome was studied, through determination of E1/E6 and E2/E6 DNA copy number ratios in 61 cervical samples of low- and high-grade malignancy and 8 cervical cancer samples, all of them associated with HPV16 infection. The selection of E1, E2 and E6 amplification target regions was performed according to the most prevalent deleted/disrupted sites of E1 and E2 genes. For this target selection we also considered the most conserved regions of E1, E2 and E6 genes among the same HPV16 isolates that were recently reported by our group. The analysis of HPV16 DNA form revealed a significant association among the mixed DNA forms in low-grade and high-grade malignancies, (χ, <0.01). The comparative analysis of E1/E6 and E2/E6 in the same cervical samples provides an accurate picture of HPV16 DNA form and may reveal whether different HPV16 DNA integrants coexist in the same cervical sample or not. This study proposes that E1/E6 and E2/E6 ratios determine with accuracy the HPV16 DNA integration pattern and may predict multiple integration events in the examined sample, thus providing significant information about the progression of cervical dysplasia.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.076810-0
2014-12-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/12/1716.html?itemId=/content/journal/jmm/10.1099/jmm.0.076810-0&mimeType=html&fmt=ahah

References

  1. Akagi K., Li J., Broutian T. R., Padilla-Nash H., Xiao W., Jiang B., Rocco J. W., Teknos T. N., Kumar B.. & other authors ( 2014;). Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. . Genome Res 24:, 185–199. [CrossRef][PubMed]
    [Google Scholar]
  2. Andersson S., Safari H., Mints M., Lewensohn-Fuchs I., Gyllensten U., Johansson B.. ( 2005;). Type distribution, viral load and integration status of high-risk human papillomaviruses in pre-stages of cervical cancer (CIN). . Br J Cancer 92:, 2195–2200. [CrossRef][PubMed]
    [Google Scholar]
  3. Arias-Pulido H., Peyton C. L., Joste N. E., Vargas H., Wheeler C. M.. ( 2006;). Human papillomavirus type 16 integration in cervical carcinoma in situ and in invasive cervical cancer. . J Clin Microbiol 44:, 1755–1762. [CrossRef][PubMed]
    [Google Scholar]
  4. Bernard H. U., Calleja-Macias I. E., Dunn S. T.. ( 2006;). Genome variation of human papillomavirus types: phylogenetic and medical implications. . Int J Cancer 118:, 1071–1076. [CrossRef][PubMed]
    [Google Scholar]
  5. Bernard H.-U., Burk R. D., Chen Z., van Doorslaer K., zur Hausen H., de Villiers E.-M.. ( 2010;). Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. . Virology 401:, 70–79. [CrossRef][PubMed]
    [Google Scholar]
  6. Boulet G. A. V., Benoy I. H., Depuydt C. E., Horvath C. A. J., Aerts M., Hens N., Vereecken A. J., Bogers J. J.. ( 2009;). Human papillomavirus 16 load and E2/E6 ratio in HPV16-positive women: biomarkers for cervical intraepithelial neoplasia ≥2 in a liquid-based cytology setting. ? Cancer Epidemiol Biomarkers Prev 18:, 2992–2999. [CrossRef][PubMed]
    [Google Scholar]
  7. Briolat J., Dalstein V., Saunier M., Joseph K., Caudroy S., Prétet J. L., Birembaut P., Clavel C.. ( 2007;). HPV prevalence, viral load and physical state of HPV-16 in cervical smears of patients with different grades of CIN. . Int J Cancer 121:, 2198–2204. [CrossRef][PubMed]
    [Google Scholar]
  8. Casas I., Powell L., Klapper P. E., Cleator G. M.. ( 1995;). New method for the extraction of viral RNA and DNA from cerebrospinal fluid for use in the polymerase chain reaction assay. . J Virol Methods 53:, 25–36. [CrossRef][PubMed]
    [Google Scholar]
  9. Chen C. M., Shyu M. P., Au L. C., Chu H. W., Cheng W. T., Choo K. B.. ( 1994;). Analysis of deletion of the integrated human papillomavirus 16 sequence in cervical cancer: a rapid multiplex polymerase chain reaction approach. . J Med Virol 44:, 206–211. [CrossRef][PubMed]
    [Google Scholar]
  10. Cricca M., Morselli-Labate A. M., Venturoli S., Ambretti S., Gentilomi G. A., Gallinella G., Costa S., Musiani M., Zerbini M.. ( 2007;). Viral DNA load, physical status and E2/E6 ratio as markers to grade HPV16 positive women for high-grade cervical lesions. . Gynecol Oncol 106:, 549–557. [CrossRef][PubMed]
    [Google Scholar]
  11. Cricca M., Venturoli S., Leo E., Costa S., Musiani M., Zerbini M.. ( 2009;). Disruption of HPV 16 E1 and E2 genes in precancerous cervical lesions. . J Virol Methods 158:, 180–183. [CrossRef][PubMed]
    [Google Scholar]
  12. de Sanjose S., Quint W. G., Alemany L., Geraets D. T., Klaustermeier J. E., Lloveras B., Tous S., Felix A., Bravo L. E.. & other authors ( 2010;). Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. . Lancet Oncol 11:, 1048–1056. [CrossRef][PubMed]
    [Google Scholar]
  13. Doorbar J., Quint W., Banks L., Bravo I. G., Stoler M., Broker T. R., Stanley M. A.. ( 2012;). The biology and life-cycle of human papillomaviruses. . Vaccine 30: (Suppl. 5), F55–F70. [CrossRef][PubMed]
    [Google Scholar]
  14. Forman D., de Martel C., Lacey C. J., Soerjomataram I., Lortet-Tieulent J., Bruni L., Vignat J., Ferlay J., Bray F.. & other authors ( 2012;). Global burden of human papillomavirus and related diseases. . Vaccine 30: (Suppl. 5), F12–F23. [CrossRef][PubMed]
    [Google Scholar]
  15. Hamid N. A., Brown C., Gaston K.. ( 2009;). The regulation of cell proliferation by the papillomavirus early proteins. . Cell Mol Life Sci 66:, 1700–1717. [CrossRef][PubMed]
    [Google Scholar]
  16. Huang L.-W., Chao S.-L., Lee B.-H.. ( 2008;). Integration of human papillomavirus type-16 and type-18 is a very early event in cervical carcinogenesis. . J Clin Pathol 61:, 627–631. [CrossRef][PubMed]
    [Google Scholar]
  17. Hudelist G., Manavi M., Pischinger K. I. D., Watkins-Riedel T., Singer C. F., Kubista E., Czerwenka K. F.. ( 2004;). Physical state and expression of HPV DNA in benign and dysplastic cervical tissue: different levels of viral integration are correlated with lesion grade. . Gynecol Oncol 92:, 873–880. [CrossRef][PubMed]
    [Google Scholar]
  18. Jemal A., Bray F., Center M. M., Ferlay J., Ward E., Forman D.. ( 2011;). Global cancer statistics. . CA Cancer J Clin 61:, 69–90. [CrossRef][PubMed]
    [Google Scholar]
  19. Jeon S., Lambert P. F.. ( 1995;). Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. . Proc Natl Acad Sci U S A 92:, 1654–1658. [CrossRef][PubMed]
    [Google Scholar]
  20. Kadaja M., Silla T., Ustav E., Ustav M.. ( 2009;). Papillomavirus DNA replication — from initiation to genomic instability. . Virology 384:, 360–368. [CrossRef][PubMed]
    [Google Scholar]
  21. Kalantari M., Karlsen F., Kristensen G., Holm R., Hagmar B., Johansson B.. ( 1998;). Disruption of the E1 and E2 reading frames of HPV 16 in cervical carcinoma is associated with poor prognosis. . Int J Gynecol Pathol 17:, 146–153. [CrossRef][PubMed]
    [Google Scholar]
  22. Kulmala S. M., Syrjänen S. M., Gyllensten U. B., Shabalova I. P., Petrovichev N., Tosi P., Syrjänen K. J., Johansson B. C.. ( 2006;). Early integration of high copy HPV16 detectable in women with normal and low grade cervical cytology and histology. . J Clin Pathol 59:, 513–517. [CrossRef][PubMed]
    [Google Scholar]
  23. Li W., Wang W., Si M., Han L., Gao Q., Luo A., Li Y., Lu Y., Wang S., Ma D.. ( 2008;). The physical state of HPV16 infection and its clinical significance in cancer precursor lesion and cervical carcinoma. . J Cancer Res Clin Oncol 134:, 1355–1361. [CrossRef][PubMed]
    [Google Scholar]
  24. Li N., Franceschi S., Howell-Jones R., Snijders P. J., Clifford G. M.. ( 2011;). Human papillomavirus type distribution in 30,848 invasive cervical cancers worldwide: variation by geographical region, histological type and year of publication. . Int J Cancer 128:, 927–935. [CrossRef][PubMed]
    [Google Scholar]
  25. Li H., Yang Y., Zhang R., Cai Y., Yang X., Wang Z., Li Y., Cheng X., Ye X.. & other authors ( 2013;). Preferential sites for the integration and disruption of human papillomavirus 16 in cervical lesions. . J Clin Virol 56:, 342–347. [CrossRef][PubMed]
    [Google Scholar]
  26. Lukaszuk K., Liss J., Wozniak I., Emerich J., Wójcikowski C.. ( 2003;). Human papillomavirus type 16 status in cervical carcinoma cell DNA assayed by multiplex PCR. . J Clin Microbiol 41:, 608–612. [CrossRef][PubMed]
    [Google Scholar]
  27. Matovina M., Sabol I., Grubisić G., Gasperov N. M., Grce M.. ( 2009;). Identification of human papillomavirus type 16 integration sites in high-grade precancerous cervical lesions. . Gynecol Oncol 113:, 120–127. [CrossRef][PubMed]
    [Google Scholar]
  28. Moody C. A., Laimins L. A.. ( 2010;). Human papillomavirus oncoproteins: pathways to transformation. . Nat Rev Cancer 10:, 550–560. [CrossRef][PubMed]
    [Google Scholar]
  29. Muñoz N., Bosch F. X., de Sanjosé S., Herrero R., Castellsagué X., Shah K. V., Snijders P. J. F., Meijer C. J. L. M..International Agency for Research on Cancer Multicenter Cervical Cancer Study Group ( 2003;). Epidemiologic classification of human papillomavirus types associated with cervical cancer. . N Engl J Med 348:, 518–527. [CrossRef][PubMed]
    [Google Scholar]
  30. Peter M., Stransky N., Couturier J., Hupé P., Barillot E., de Cremoux P., Cottu P., Radvanyi F., Sastre-Garau X.. ( 2010;). Frequent genomic structural alterations at HPV insertion sites in cervical carcinoma. . J Pathol 221:, 320–330. [CrossRef][PubMed]
    [Google Scholar]
  31. Sotlar K., Diemer D., Dethleffs A., Hack Y., Stubner A., Vollmer N., Menton S., Menton M., Dietz K.. & other authors ( 2004;). Detection and typing of human papillomavirus by e6 nested multiplex PCR. . J Clin Microbiol 42:, 3176–3184. [CrossRef][PubMed]
    [Google Scholar]
  32. Theelen W., Litjens R. J., Vinokurova S., Haesevoets A., Reijans M., Simons G., Smedts F., Herrington C. S., Ramaekers F. C.. & other authors ( 2013;). Human papillomavirus multiplex ligation-dependent probe amplification assay for the assessment of viral load, integration, and gain of telomerase-related genes in cervical malignancies. . Hum Pathol 44:, 2410–2418. [CrossRef][PubMed]
    [Google Scholar]
  33. Thierry F.. ( 2009;). Transcriptional regulation of the papillomavirus oncogenes by cellular and viral transcription factors in cervical carcinoma. . Virology 384:, 375–379. [CrossRef][PubMed]
    [Google Scholar]
  34. Tonon S. A., Picconi M. A., Bos P. D., Zinovich J. B., Galuppo J., Alonio L. V., Teyssie A. R.. ( 2001;). Physical status of the E2 human papilloma virus 16 viral gene in cervical preneoplastic and neoplastic lesions. . J Clin Virol 21:, 129–134. [CrossRef][PubMed]
    [Google Scholar]
  35. Tsakogiannis D., Ruether I. G., Kyriakopoulou Z., Pliaka V., Theoharopoulou A., Skordas V., Panotopoulou E., Nepka C., Markoulatos P.. ( 2012;). Sequence variation analysis of the E2 gene of human papilloma virus type 16 in cervical lesions from women in Greece. . Arch Virol 157:, 825–832. [CrossRef][PubMed]
    [Google Scholar]
  36. Tsakogiannis D., Papadopoulou A., Kontostathi G., Ruether I. G., Kyriakopoulou Z., Dimitriou T. G., Orfanoudakis G., Markoulatos P.. ( 2013;). Molecular and evolutionary analysis of HPV16 E6 and E7 genes in Greek women. . J Med Microbiol 62:, 1688–1696. [CrossRef][PubMed]
    [Google Scholar]
  37. Tsakogiannis D., Darmis F., Gortsilas P., Ruether I. G., Kyriakopoulou Z., Dimitriou T. G., Amoutzias G., Markoulatos P.. ( 2014;). Nucleotide polymorphisms of the human papillomavirus 16 E1 gene. . Arch Virol 159:, 51–63. [CrossRef][PubMed]
    [Google Scholar]
  38. Wentzensen N., Vinokurova S., von Knebel Doeberitz M.. ( 2004;). Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract. . Cancer Res 64:, 3878–3884. [CrossRef][PubMed]
    [Google Scholar]
  39. Xu B., Chotewutmontri S., Wolf S., Klos U., Schmitz M., Dürst M., Schwarz E.. ( 2013;). Multiplex identification of human papillomavirus 16 DNA integration sites in cervical carcinomas. . PLoS ONE 8:, e66693. [CrossRef][PubMed]
    [Google Scholar]
  40. Yu T., Ferber M. J., Cheung T. H., Chung T. K., Wong Y. F., Smith D. I.. ( 2005;). The role of viral integration in the development of cervical cancer. . Cancer Genet Cytogenet 158:, 27–34. [CrossRef][PubMed]
    [Google Scholar]
  41. zur Hausen H.. ( 1996;). Papillomavirus infections–a major cause of human cancers. . Biochim Biophys Acta 1288:, F55–F78.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.076810-0
Loading
/content/journal/jmm/10.1099/jmm.0.076810-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error