1887

Abstract

Biofilm formation on medical and surgical devices is a major virulence determinant for . The bacterium . is able to produce biofilms on biotic and abiotic surfaces and is the cause of ocular infection (OI). Recent studies have shown that -amino acids inhibit and disrupt biofilm formation in the prototype strains NCBI3610 and SCO1. The effect of -amino acids on . biofilm formation has yet to be tested for clinical or commensal isolates. . strains isolated from healthy skin ( = 3), conjunctiva ( = 9) and OI ( = 19) were treated with -Leu, -Tyr, -Pro, -Phe, -Met or -Ala and tested for biofilm formation. The presence of -amino acids during biofilm formation resulted in a variety of patterns. Some strains were sensitive to all amino acids tested, while others were sensitive to one or more, and one strain was resistant to all of them when added individually; in this way -Met inhibited most of the strains (26/31), followed by -Phe (21/31). Additionally, the use of -Met inhibited biofilm formation on a contact lens. The use of -isomers caused no defect in biofilm formation in all strains tested. In contrast, when biofilms were already formed -Met, -Phe and -Pro were able to disrupt it. In summary, here we demonstrated the inhibitory effect of -amino acids on biofilm formation in . . Moreover, we showed, for the first time, that . clinical strains have a different sensitivity to these compounds during biofilm formation.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.075796-0
2014-10-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/10/1369.html?itemId=/content/journal/jmm/10.1099/jmm.0.075796-0&mimeType=html&fmt=ahah

References

  1. Arrecubieta C., Lee M. H., Macey A., Foster T. J., Lowy F. D.. ( 2007;). SdrF, a Staphylococcus epidermidis surface protein, binds type I collagen. . J Biol Chem 282:, 18767–18776. [CrossRef][PubMed]
    [Google Scholar]
  2. Bellais S., Arthur M., Dubost L., Hugonnet J. E., Gutmann L., van Heijenoort J., Legrand R., Brouard J. P., Rice L., Mainardi J. L.. ( 2006;). Aslfm, the D-aspartate ligase responsible for the addition of D-aspartic acid onto the peptidoglycan precursor of Enterococcus faecium. . J Biol Chem 281:, 11586–11594. [CrossRef][PubMed]
    [Google Scholar]
  3. Bodanszky M., Perlman D.. ( 1969;). Peptide antibiotics. . Science 163:, 352–358. [CrossRef][PubMed]
    [Google Scholar]
  4. Branda S. S., Chu F., Kearns D. B., Losick R., Kolter R.. ( 2006;). A major protein component of the Bacillus subtilis biofilm matrix. . Mol Microbiol 59:, 1229–1238. [CrossRef][PubMed]
    [Google Scholar]
  5. Caparrós M., Torrecuadrada J. L., de Pedro M. A.. ( 1991;). Effect of D-amino acids on Escherichia coli strains with impaired penicillin-binding proteins. . Res Microbiol 142:, 345–350. [CrossRef][PubMed]
    [Google Scholar]
  6. Caparrós M., Pisabarro A. G., de Pedro M. A.. ( 1992;). Effect of D-amino acids on structure and synthesis of peptidoglycan in Escherichia coli. . J Bacteriol 174:, 5549–5559.[PubMed]
    [Google Scholar]
  7. Cava F., de Pedro M. A., Lam H., Davis B. M., Waldor M. K.. ( 2011;). Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. . EMBO J 30:, 3442–3453. [CrossRef][PubMed]
    [Google Scholar]
  8. Chang Y. F., Adams E.. ( 1974;). D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. . J Bacteriol 117:, 753–764.[PubMed]
    [Google Scholar]
  9. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H.. ( 1985;). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. . J Clin Microbiol 22:, 996–1006.[PubMed]
    [Google Scholar]
  10. Christner M., Franke G. C., Schommer N. N., Wendt U., Wegert K., Pehle P., Kroll G., Schulze C., Buck F.. & other authors ( 2010;). The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. . Mol Microbiol 75:, 187–207. [CrossRef][PubMed]
    [Google Scholar]
  11. Conlan S., Mijares L. A.,NISC Comparative Sequencing program Becker J., Blakesley R. W., Bouffard G. G., Brooks S., Coleman H., Gupta J.. & other authors ( 2012;). Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. . Genome Biol 13:, R64. [CrossRef][PubMed]
    [Google Scholar]
  12. Conrad R. S., Massey L. K., Sokatch J. R.. ( 1974;). D- and L-isoleucine metabolism and regulation of their pathways in Pseudomonas putida. . J Bacteriol 118:, 103–111.[PubMed]
    [Google Scholar]
  13. Duggirala A., Kenchappa P., Sharma S., Peeters J. K., Ahmed N., Garg P., Das T., Hasnain S. E.. ( 2007;). High-resolution genome profiling differentiated Staphylococcus epidermidis isolated from patients with ocular infections and normal individuals. . Invest Ophthalmol Vis Sci 48:, 3239–3245. [CrossRef][PubMed]
    [Google Scholar]
  14. Gross M., Cramton S. E., Götz F., Peschel A.. ( 2001;). Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. . Infect Immun 69:, 3423–3426. [CrossRef][PubMed]
    [Google Scholar]
  15. Guo B., Zhao X., Shi Y., Zhu D., Zhang Y.. ( 2007;). Pathogenic implication of a fibrinogen-binding protein of Staphylococcus epidermidis in a rat model of intravascular-catheter-associated infection. . Infect Immun 75:, 2991–2995. [CrossRef][PubMed]
    [Google Scholar]
  16. Halvorson H. O., Spiegelman S.. ( 1952;). The inhibition of enzyme formation by amino acid analogues. . J Bacteriol 64:, 207–221.[PubMed]
    [Google Scholar]
  17. Hammes W. P.. ( 1978;). The LD-carboxypeptidase activity in Gaffkya homari. The target of the action of D-amino acids or glycine on the formation of wall-bound peptidoglycan. . Eur J Biochem 91:, 501–507. [CrossRef][PubMed]
    [Google Scholar]
  18. Hartford O., O’Brien L., Schofield K., Wells J., Foster T. J.. ( 2001;). The Fbe (SdrG) protein of Staphylococcus epidermidis HB promotes bacterial adherence to fibrinogen. . Microbiology 147:, 2545–2552.[PubMed]
    [Google Scholar]
  19. Heilmann C., Hussain M., Peters G., Götz F.. ( 1997;). Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. . Mol Microbiol 24:, 1013–1024. [CrossRef][PubMed]
    [Google Scholar]
  20. Hills G. M.. ( 1949;). Chemical factors in the germination of spore-bearing aerobes; the effect of yeast extract on the germination of Bacillus anthracis and its replacement by adenosine. . Biochem J 45:, 353–362.[PubMed]
    [Google Scholar]
  21. Hochbaum A. I., Kolodkin-Gal I., Foulston L., Kolter R., Aizenberg J., Losick R.. ( 2011;). Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. . J Bacteriol 193:, 5616–5622. [CrossRef][PubMed]
    [Google Scholar]
  22. Izaki K., Matsuhashi M., Strominger J. L.. ( 1968;). Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. . J Biol Chem 243:, 3180–3192.[PubMed]
    [Google Scholar]
  23. Juárez-Verdayes M. A., González-Uribe P. M., Peralta H., Rodríguez-Martínez S., Jan-Roblero J., Escamilla-Hernández R., Cancino-Diaz M. E., Cancino-Diaz J. C.. ( 2012;). Detection of hssS, hssR, hrtA, and hrtB genes and their expression by hemin in Staphylococcus epidermidis. . Can J Microbiol 58:, 1063–1072. [CrossRef][PubMed]
    [Google Scholar]
  24. Kim P. M., Duan X., Huang A. S., Liu C. Y., Ming G. L., Song H., Snyder S. H.. ( 2010;). Aspartate racemase, generating neuronal D-aspartate, regulates adult neurogenesis. . Proc Natl Acad Sci U S A 107:, 3175–3179. [CrossRef][PubMed]
    [Google Scholar]
  25. Kleckner N. W., Dingledine R.. ( 1988;). Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. . Science 241:, 835–837. [CrossRef][PubMed]
    [Google Scholar]
  26. Kolodkin-Gal I., Romero D., Cao S., Clardy J., Kolter R., Losick R.. ( 2010;). D-amino acids trigger biofilm disassembly. . Science 328:, 627–629. [CrossRef][PubMed]
    [Google Scholar]
  27. Lam H., Oh D. C., Cava F., Takacs C. N., Clardy J., de Pedro M. A., Waldor M. K.. ( 2009;). D-amino acids govern stationary phase cell wall remodeling in bacteria. . Science 325:, 1552–1555. [CrossRef][PubMed]
    [Google Scholar]
  28. Mack D., Fischer W., Krokotsch A., Leopold K., Hartmann R., Egge H., Laufs R.. ( 1996;). The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. . J Bacteriol 178:, 175–183.[PubMed]
    [Google Scholar]
  29. Pioli D., Venables W. A., Franklin F. C.. ( 1976;). D-Alanine dehydrogenase.. Arch Microbiol 110:, 287–293. [CrossRef][PubMed]
    [Google Scholar]
  30. Roesch P. L., Redford P., Batchelet S., Moritz R. L., Pellett S., Haugen B. J., Blattner F. R., Welch R. A.. ( 2003;). Uropathogenic Escherichia coli use d-serine deaminase to modulate infection of the murine urinary tract. . Mol Microbiol 49:, 55–67. [CrossRef][PubMed]
    [Google Scholar]
  31. Rohde H., Burdelski C., Bartscht K., Hussain M., Buck F., Horstkotte M. A., Knobloch J. K., Heilmann C., Herrmann M., Mack D.. ( 2005;). Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. . Mol Microbiol 55:, 1883–1895. [CrossRef][PubMed]
    [Google Scholar]
  32. Romero D., Aguilar C., Losick R., Kolter R.. ( 2010;). Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. . Proc Natl Acad Sci U S A 107:, 2230–2234. [CrossRef][PubMed]
    [Google Scholar]
  33. Romero D., Vlamakis H., Losick R., Kolter R.. ( 2011;). An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms. . Mol Microbiol 80:, 1155–1168. [CrossRef][PubMed]
    [Google Scholar]
  34. Sadovskaya I., Vinogradov E., Flahaut S., Kogan G., Jabbouri S.. ( 2005;). Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. . Infect Immun 73:, 3007–3017. [CrossRef][PubMed]
    [Google Scholar]
  35. Spormann A. M.. ( 2008;). Physiology of microbes in biofilms. . Curr Top Microbiol Immunol 322:, 17–36.[PubMed]
    [Google Scholar]
  36. Stewart P. S., Franklin M. J.. ( 2008;). Physiological heterogeneity in biofilms. . Nat Rev Microbiol 6:, 199–210. [CrossRef][PubMed]
    [Google Scholar]
  37. Tormo M. A., Knecht E., Götz F., Lasa I., Penadés J. R.. ( 2005;). Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?. Microbiology 151:, 2465–2475. [CrossRef][PubMed]
    [Google Scholar]
  38. Uçkay I., Pittet D., Vaudaux P., Sax H., Lew D., Waldvogel F.. ( 2009;). Foreign body infections due to Staphylococcus epidermidis. . Ann Med 41:, 109–119. [CrossRef][PubMed]
    [Google Scholar]
  39. Veiga P., Piquet S., Maisons A., Furlan S., Courtin P., Chapot-Chartier M. P., Kulakauskas S.. ( 2006;). Identification of an essential gene responsible for D-Asp incorporation in the Lactococcus lactis peptidoglycan crossbridge. . Mol Microbiol 62:, 1713–1724. [CrossRef][PubMed]
    [Google Scholar]
  40. Wolosker H.. ( 2007;). NMDA receptor regulation by D-serine: new findings and perspectives. . Mol Neurobiol 36:, 152–164. [CrossRef][PubMed]
    [Google Scholar]
  41. Wolosker H., Panizzutti R., De Miranda J.. ( 2002;). Neurobiology through the looking-glass: D-serine as a new glial-derived transmitter. . Neurochem Int 41:, 327–332. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.075796-0
Loading
/content/journal/jmm/10.1099/jmm.0.075796-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error