1887
Preview this article:
Zoom in
Zoomout

A strain with a meningococcal sequence, Page 1 of 1

| /docserver/preview/fulltext/jmm/63/8/1113_jmm074286-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.074286-0
2014-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/8/1113.html?itemId=/content/journal/jmm/10.1099/jmm.0.074286-0&mimeType=html&fmt=ahah

References

  1. Ameyama S., Onodera S., Takahata M., Minami S., Maki N., Endo K., Goto H., Suzuki H., Oishi Y.. ( 2002;). Mosaic-like structure of penicillin-binding protein 2 gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime. . Antimicrob Agents Chemother 46:, 3744–3749. [CrossRef][PubMed]
    [Google Scholar]
  2. Chisholm S. A., Dave J., Ison C. A.. ( 2010;). High-level azithromycin resistance occurs in Neisseria gonorrhoeae as a result of a single point mutation in the 23S rRNA genes. . Antimicrob Agents Chemother 54:, 3812–3816. [CrossRef][PubMed]
    [Google Scholar]
  3. Farrell D. J.. ( 1999;). Evaluation of AMPLICOR Neisseria gonorrhoeae PCR using cppB nested PCR and 16S rRNA PCR. . J Clin Microbiol 37:, 386–390.[PubMed]
    [Google Scholar]
  4. Linz B., Schenker M., Zhu P., Achtman M.. ( 2000;). Frequent interspecific genetic exchange between commensal Neisseriae and Neisseria meningitidis. . Mol Microbiol 36:, 1049–1058. [CrossRef][PubMed]
    [Google Scholar]
  5. Ng L. K., Martin I., Liu G., Bryden L.. ( 2002;). Mutation in 23S rRNA associated with macrolide resistance in Neisseria gonorrhoeae. . Antimicrob Agents Chemother 46:, 3020–3025. [CrossRef][PubMed]
    [Google Scholar]
  6. Tabrizi S. N., Unemo M., Limnios A. E., Hogan T. R., Hjelmevoll S. O., Garland S. M., Tapsall J.. ( 2011;). Evaluation of six commercial nucleic acid amplification tests for detection of Neisseria gonorrhoeae and other Neisseria species. . J Clin Microbiol 49:, 3610–3615. [CrossRef][PubMed]
    [Google Scholar]
  7. Trembizki E., Lahra M., Stevens K., Freeman K., Hogan T., Hogg G., Lawrence A., Limnios A., Pearson J. et al. ( 2014a;). A national quality assurance survey of Neisseria gonorrhoeae testing. . J Med Microbiol 63:, 45–49. [CrossRef][PubMed]
    [Google Scholar]
  8. Trembizki E., Smith H., Lahra M. M., Chen M., Donovan B., Fairley C. K., Guy R., Kaldor J., Regan D. et al. ( 2014b;). High-throughput informative single nucleotide polymorphism-based typing of Neisseria gonorrhoeae using the Sequenom MassARRAY iPLEX platform. . J Antimicrob Chemother 69:, 1526–1532. [CrossRef][PubMed]
    [Google Scholar]
  9. Unemo M., Golparian D., Nicholas R., Ohnishi M., Gallay A., Sednaoui P.. ( 2012;). High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. . Antimicrob Agents Chemother 56:, 1273–1280. [CrossRef][PubMed]
    [Google Scholar]
  10. Zarantonelli L., Borthagaray G., Lee E. H., Shafer W. M.. ( 1999;). Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. . Antimicrob Agents Chemother 43:, 2468–2472.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.074286-0
Loading
/content/journal/jmm/10.1099/jmm.0.074286-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error