1887

Abstract

We found that tetrandrine (TET) can reverse the resistance of to fluconazole (FLC) and that this interaction is associated with the inhibition of drug efflux pumps. Mitochondrial aerobic respiration, which plays a major role in metabolism, is the primary source of ATP for cellular processes, including the activation of efflux pumps. However, it was unclear if TET exerts its synergistic action against via its impact on the mitochondrial aerobic respiratory metabolism. To investigate this mechanism, we examined the impact of FLC in the presence or absence of TET on two strains obtained from a single parental source (FLC-sensitive strain CA-1 and FLC-resistant strain CA-16). We analysed key measures of energy generation and conversion, including the activity of respiration chain complexes I and III (CI and CIII), ATP synthase (CV) activity, and the generation of reactive oxygen species (ROS), and studied intracellular ATP levels and the mitochondrial membrane potential (ΔΨ), which has a critical impact on energy transport. Mitochondrial morphology was observed by confocal microscopy. Our functional analyses revealed that, compared with strains treated only with FLC, TET+FLC increased the ATP levels and decreased ΔΨ in CA-1, but decreased ATP levels and increased ΔΨ in CA-16 (<0.05). Additionally, CI, CIII and CV activity decreased by 23–48 %. The production of ROS increased by two- to threefold and mitochondrial morphology was altered in both strains. Our data suggested that TET impacted mitochondrial aerobic respiratory metabolism by influencing the generation and transport of ATP, reducing the utilization of ATP, and resulting in the inhibition of drug efflux pump activity. This activity contributed to the synergistic action of TET on FLC against .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.073890-0
2014-07-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/7/988.html?itemId=/content/journal/jmm/10.1099/jmm.0.073890-0&mimeType=html&fmt=ahah

References

  1. Alonso-Monge R., Carvaihlo S., Nombela C., Rial E., Pla J.. ( 2009;). The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. . Microbiology 155:, 413–423. [CrossRef][PubMed]
    [Google Scholar]
  2. Bradford M. M.. ( 1976;). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. . Anal Biochem 72:, 248–254. [CrossRef][PubMed]
    [Google Scholar]
  3. Clark F. S., Parkinson T., Hitchcock C. A., Gow N. A. R.. ( 1996;). Correlation between rhodamine 123 accumulation and azole sensitivity in Candida species: possible role for drug efflux in drug resistance. . Antimicrob Agents Chemother 40:, 419–425.[PubMed]
    [Google Scholar]
  4. CLSI ( 2008;). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, 3rd edn, Document M27-A3. Wayne, PA:: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  5. Dagley M. J., Gentle I. E., Beilharz T. H., Pettolino F. A., Djordjevic J. T., Lo T. L., Uwamahoro N., Rupasinghe T., Tull D. L.. & other authors ( 2011;). Cell wall integrity is linked to mitochondria and phospholipid homeostasis in Candida albicans through the activity of the post-transcriptional regulator Ccr4-Pop2. . Mol Microbiol 79:, 968–989. [CrossRef][PubMed]
    [Google Scholar]
  6. Drakulic T., Temple M. D., Guido R., Jarolim S., Breitenbach M., Attfield P. V., Dawes I. W.. ( 2005;). Involvement of oxidative stress response genes in redox homeostasis, the level of reactive oxygen species, and ageing in Saccharomyces cerevisiae. . FEMS Yeast Res 5:, 1215–1228. [CrossRef][PubMed]
    [Google Scholar]
  7. Feng D., Mei Y., Wang Y., Zhang B., Wang C., Xu L.. ( 2008;). Tetrandrine protects mice from concanavalin A-induced hepatitis through inhibiting NF-kappaB activation. . Immunol Lett 121:, 127–133. [CrossRef][PubMed]
    [Google Scholar]
  8. Goffeau A.. ( 2008;). Drug resistance: the fight against fungi. . Nature 452:, 541–542. [CrossRef][PubMed]
    [Google Scholar]
  9. Gomes L. C., Di Benedetto G., Scorrano L.. ( 2011;). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. . Nat Cell Biol 13:, 589–598. [CrossRef][PubMed]
    [Google Scholar]
  10. Hiller D., Sanglard D., Morschhäuser J.. ( 2006;). Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. . Antimicrob Agents Chemother 50:, 1365–1371. [CrossRef][PubMed]
    [Google Scholar]
  11. Kusch H., Engelmann S., Bode R., Albrecht D., Morschhäuser J., Hecker M.. ( 2008;). A proteomic view of Candida albicans yeast cell metabolism in exponential and stationary growth phases. . Int J Med Microbiol 298:, 291–318. [CrossRef][PubMed]
    [Google Scholar]
  12. Li F. X., Zhang H.. ( 2006;). In vitro study of the synergistic effect of tetrandrine and fluconazole against Candida albicans. . Chin J Dermatol 39:, 454–456.
    [Google Scholar]
  13. Li D., Chen H., Florentino A., Alex D., Sikorski P., Fonzi W. A., Calderone R.. ( 2011;). Enzymatic dysfunction of mitochondrial complex I of the Candida albicans goa1 mutant is associated with increased reactive oxidants and cell death. . Eukaryot Cell 10:, 672–682. [CrossRef][PubMed]
    [Google Scholar]
  14. Milani G., Jarmuszkiewicz W., Sluse-Goffart C. M., Schreiber A. Z., Vercesi A. E., Sluse F. E.. ( 2001;). Respiratory chain network in mitochondria of Candida parapsilosis: ADP/O appraisal of the multiple electron pathways. . FEBS Lett 508:, 231–235. [CrossRef][PubMed]
    [Google Scholar]
  15. Misra P., Kumar A., Khare P., Gupta S., Kumar N., Dube A.. ( 2009;). Pro-apoptotic effect of the landrace Bangla Mahoba of Piper betle on Leishmania donovani may be due to the high content of eugenol. . J Med Microbiol 58:, 1058–1066. [CrossRef][PubMed]
    [Google Scholar]
  16. Monk B. C., Goffeau A.. ( 2008;). Outwitting multidrug resistance to antifungals. . Science 321:, 367–369. [CrossRef][PubMed]
    [Google Scholar]
  17. Mukhopadhyay K., Prasad T., Saini P., Pucadyil T. J., Chattopadhyay A., Prasad R.. ( 2004;). Membrane sphingolipid–ergosterol interactions are important determinants of multidrug resistance in Candida albicans. . Antimicrob Agents Chemother 48:, 1778–1787. [CrossRef][PubMed]
    [Google Scholar]
  18. Odds F. C.. ( 1996;). Resistance of clinically important yeasts to antifungal agents. . Int J Antimicrob Agents 6:, 145–147. [CrossRef][PubMed]
    [Google Scholar]
  19. Park S., Perlin D. S.. ( 2005;). Establishing surrogate markers for fluconazole resistance in Candida albicans. . Microb Drug Resist 11:, 232–238. [CrossRef][PubMed]
    [Google Scholar]
  20. Pfaller M. A., Rhine-Chalberg J., Redding S. W., Smith J., Farinacci G., Fothergill A. W., Rinaldi M. G.. ( 1994;). Variations in fluconazole susceptibility and electrophoretic karyotype among oral isolates of Candida albicans from patients with AIDS and oral candidiasis. . J Clin Microbiol 32:, 59–64.[PubMed]
    [Google Scholar]
  21. Prasad R., Kapoor K.. ( 2004;). Multidrug resistance in yeast Candida. . Int Rev Cytol 242:, 215–248. [CrossRef][PubMed]
    [Google Scholar]
  22. Ruy F., Vercesi A. E., Kowaltowski A. J.. ( 2006;). Inhibition of specific electron transport pathways leads to oxidative stress and decreased Candida albicans proliferation. . J Bioenerg Biomembr 38:, 129–135. [CrossRef][PubMed]
    [Google Scholar]
  23. Soengas M. S.. ( 2012;). Mitophagy or how to control the Jekyll and Hyde embedded in mitochondrial metabolism: implications for melanoma progression and drug resistance. . Pigment Cell Melanoma Res 25:, 721–731. [CrossRef][PubMed]
    [Google Scholar]
  24. Wang Y., Cao Y. Y., Jia X. M., Cao Y. B., Gao P. H., Fu X. P., Ying K., Chen W. S., Jiang Y. Y.. ( 2006;). Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. . Free Radic Biol Med 40:, 1201–1209. [CrossRef][PubMed]
    [Google Scholar]
  25. Wang K. L., Zhang H., Jiang H. H., Shi J. P., Gao A. L., Ho H. I., Chao H. A.. ( 2007;). In vitro study on tetrandrine as a synergist to fluconazole in murine model of vaginal candidiasis. . Chin J Zoonoses 23:, 474–478.
    [Google Scholar]
  26. White T. C., Pfaller M. A., Rinaldi M. G., Smith J., Redding S. W.. ( 1997;). Stable azole drug resistance associated with a substrain of Candida albicans from an HIV-infected patient. . Oral Dis 3: (Suppl 1), S102–S109. [CrossRef][PubMed]
    [Google Scholar]
  27. White T. C., Marr K. A., Bowden R. A.. ( 1998;). Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. . Clin Microbiol Rev 11:, 382–402.[PubMed]
    [Google Scholar]
  28. Wilhelm J., Fuksová H., Schwippelová Z., Vytásek R., Pichová A.. ( 2006;). The effects of reactive oxygen and nitrogen species during yeast replicative ageing. . Biofactors 27:, 185–193. [CrossRef][PubMed]
    [Google Scholar]
  29. Xiao J., Liang D., Zhang H., Liu Y., Li F., Chen Y. H.. ( 2010;). 4′-Chlorodiazepam, a translocator protein (18 kDa) antagonist, improves cardiac functional recovery during postischemia reperfusion in rats. . Exp Biol Med (Maywood) 235:, 478–486. [CrossRef][PubMed]
    [Google Scholar]
  30. Xu M., Liu L., Qi C., Deng B., Cai X.. ( 2008;). Sinomenine versus NSAIDs for the treatment of rheumatoid arthritis: a systematic review and meta-analysis. . Planta Med 74:, 1423–1429. [CrossRef][PubMed]
    [Google Scholar]
  31. Xu Y., Wang Y., Yan L., Liang R. M., Dai B. D., Tang R. J., Gao P. H., Jiang Y. Y.. ( 2009;). Proteomic analysis reveals a synergistic mechanism of fluconazole and berberine against fluconazole-resistant Candida albicans: endogenous ROS augmentation. . J Proteome Res 8:, 5296–5304. [CrossRef][PubMed]
    [Google Scholar]
  32. Yan L., Zhang J., Li M., Cao Y., Xu Z., Cao Y., Gao P., Wang Y., Jiang Y.. ( 2008;). DNA microarray analysis of fluconazole resistance in a laboratory Candida albicans strain. . Acta Biochim Biophys Sin (Shanghai) 40:, 1048–1060. [CrossRef][PubMed]
    [Google Scholar]
  33. Zeuthen M. L., Dabrowa N., Aniebo C. M., Howard D. H.. ( 1988;). Ethanol tolerance and the induction of stress proteins by ethanol in Candida albicans. . J Gen Microbiol 134:, 1375–1384.[PubMed]
    [Google Scholar]
  34. Zhang H., Gao A., Li F., Zhang G., Ho H. I., Liao W.. ( 2009;). Mechanism of action of tetrandrine, a natural inhibitor of Candida albicans drug efflux pumps. . Yakugaku Zasshi 129:, 623–630. [CrossRef][PubMed]
    [Google Scholar]
  35. Zhang X., Guo H., Gao L., Song Y., Li S., Zhang H.. ( 2013;). Molecular mechanisms underlying the tetrandrine-mediated reversal of the fluconazole resistance of Candida albicans. . Pharm Biol 51:, 749–752. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.073890-0
Loading
/content/journal/jmm/10.1099/jmm.0.073890-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error