1887

Abstract

We isolated a total of 653 strains from 64 community environmental samples in Massachusetts, USA. Among these isolates, 9.65 % (63 strains) were benzalkonium chloride (BC)-resistant staphylococci. All BC-resistant strains were collected from surfaces upon which antibacterial wipes or antibacterial sprays containing 0.02–0.12 % BC had frequently been used in the fitness centres. However, isolates from surfaces upon which antibacterial wipes or antibacterial sprays had not been used were all sensitive to BC. All BC-resistant strains were also resistant to erythromycin, penicillin and ampicillin. In addition, 51 strains showed resistance to cetyltrimethylammonium bromide (CTAB), 15 strains showed resistance to chloramphenicol, 12 strains showed resistance to ciprofloxacin and four strains showed resistance to meticillin. Resistance gene analysis demonstrated that 41 strains contained , 30 strains had , 25 strains contained , 16 strains had and eight strains contained . These data indicate that application of BC is associated with environmental staphylococcal antimicrobial resistance.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.073072-0
2014-05-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/5/735.html?itemId=/content/journal/jmm/10.1099/jmm.0.073072-0&mimeType=html&fmt=ahah

References

  1. Aiello A. E., Larson E.. ( 2003;). Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community. . Lancet Infect Dis 3:, 501–506. [CrossRef][PubMed]
    [Google Scholar]
  2. Alam M. M., Ishino M., Kobayashi N.. ( 2003;). Analysis of genomic diversity and evolution of the low-level antiseptic resistance gene smr in Staphylococcus aureus. . Microb Drug Resist 9: (Suppl. 1), S1–S7. [CrossRef][PubMed]
    [Google Scholar]
  3. Bjorland J., Sunde M., Waage S.. ( 2001;). Plasmid-borne smr gene causes resistance to quaternary ammonium compounds in bovine Staphylococcus aureus. . J Clin Microbiol 39:, 3999–4004. [CrossRef][PubMed]
    [Google Scholar]
  4. Bjorland J., Steinum T., Kvitle B., Waage S., Sunde M., Heir E.. ( 2005;). Widespread distribution of disinfectant resistance genes among staphylococci of bovine and caprine origin in Norway. . J Clin Microbiol 43:, 4363–4368. [CrossRef][PubMed]
    [Google Scholar]
  5. Chaieb K., Zmantar T., Chehab O., Bouchami O., Ben Hasen A., Mahdouani K., Bakhrouf A.. ( 2007;). Antibiotic resistance genes detected by multiplex PCR assays in Staphylococcus epidermidis strains isolated from dialysis fluid and needles in a dialysis service. . Jpn J Infect Dis 60:, 183–187.[PubMed]
    [Google Scholar]
  6. CLSI (2006). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 7th edn. Approved standard M7–A7. Wayne, PA: Clinical and Laboratory Standards Institute.
  7. Correa J. E., De Paulis A., Predari S., Sordelli D. O., Jeric P. E.. ( 2008;). First report of qacG, qacH and qacJ genes in Staphylococcus haemolyticus human clinical isolates. . J Antimicrob Chemother 62:, 956–960. [CrossRef][PubMed]
    [Google Scholar]
  8. Egusa H., Watamoto T., Matsumoto T., Abe K., Kobayashi M., Akashi Y., Yatani H.. ( 2008;). Clinical evaluation of the efficacy of removing microorganisms to disinfect patient-derived dental impressions. . Int J Prosthodont 21:, 531–538.[PubMed]
    [Google Scholar]
  9. Fournier B., Aras R., Hooper D. C.. ( 2000;). Expression of the multidrug resistance transporter NorA from Staphylococcus aureus is modified by a two-component regulatory system. . J Bacteriol 182:, 664–671. [CrossRef][PubMed]
    [Google Scholar]
  10. Guillard T., Cavallo J. D., Cambau E., Duval V., Bajolet O., Brasme L., de Champs C., Vernet-Garnier V.. ( 2010;). [Real-time PCR for fast detection of plasmid-mediated qnr genes in extended spectrum β-lactamase producing Enterobacteriaceae]. . Pathol Biol (Paris) 58:, 430–433 [in French]. [CrossRef][PubMed]
    [Google Scholar]
  11. He G.-X., Kuroda T., Mima T., Morita Y., Mizushima T., Tsuchiya T.. ( 2004;). An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. . J Bacteriol 186:, 262–265. [CrossRef][PubMed]
    [Google Scholar]
  12. Heikens E., Fleer A., Paauw A., Florijn A., Fluit A. C.. ( 2005;). Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. . J Clin Microbiol 43:, 2286–2290. [CrossRef][PubMed]
    [Google Scholar]
  13. Huebner J., Goldmann D. A.. ( 1999;). Coagulase-negative staphylococci: role as pathogens. . Annu Rev Med 50:, 223–236. [CrossRef][PubMed]
    [Google Scholar]
  14. Jones C. H., Tuckman M., Howe A. Y. M., Orlowski M., Mullen S., Chan K., Bradford P. A.. ( 2006;). Diagnostic PCR analysis of the occurrence of methicillin and tetracycline resistance genes among Staphylococcus aureus isolates from phase 3 clinical trials of tigecycline for complicated skin and skin structure infections. . Antimicrob Agents Chemother 50:, 505–510. [CrossRef][PubMed]
    [Google Scholar]
  15. Kampf G., Kramer A.. ( 2004;). Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. . Clin Microbiol Rev 17:, 863–893. [CrossRef][PubMed]
    [Google Scholar]
  16. King M. D., Humphrey B. J., Wang Y. F., Kourbatova E. V., Ray S. M., Blumberg H. M.. ( 2006;). Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections. . Ann Intern Med 144:, 309–317. [CrossRef][PubMed]
    [Google Scholar]
  17. Kugelman G., Tapsall J. W., Goire N., Syrmis M. W., Limnios A., Lambert S. B., Nissen M. D., Sloots T. P., Whiley D. M.. ( 2009;). Simple, rapid, and inexpensive detection of Neisseria gonorrhoeae resistance mechanisms using heat-denatured isolates and SYBR green-based real-time PCR. . Antimicrob Agents Chemother 53:, 4211–4216. [CrossRef][PubMed]
    [Google Scholar]
  18. Li W., Hartung J. S., Levy L.. ( 2006;). Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. . J Microbiol Methods 66:, 104–115. [CrossRef][PubMed]
    [Google Scholar]
  19. Liu Q., Liu M., Wu Q., Li C., Zhou T., Ni Y.. ( 2009;). Sensitivities to biocides and distribution of biocide resistance genes in quaternary ammonium compound tolerant Staphylococcus aureus isolated in a teaching hospital. . Scand J Infect Dis 41:, 403–409. [CrossRef][PubMed]
    [Google Scholar]
  20. McCay P. H., Ocampo-Sosa A. A., Fleming G. T. A.. ( 2010;). Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. . Microbiology 156:, 30–38. [CrossRef][PubMed]
    [Google Scholar]
  21. McDonnell G., Russell A. D.. ( 1999;). Antiseptics and disinfectants: activity, action, and resistance. . Clin Microbiol Rev 12:, 147–179.[PubMed]
    [Google Scholar]
  22. Noguchi N., Suwa J., Narui K., Sasatsu M., Ito T., Hiramatsu K., Song J.-H.. ( 2005;). Susceptibilities to antiseptic agents and distribution of antiseptic-resistance genes qacA/B and smr of methicillin-resistant Staphylococcus aureus isolated in Asia during 1998 and 1999. . J Med Microbiol 54:, 557–565. [CrossRef][PubMed]
    [Google Scholar]
  23. Pagedar A., Singh J., Batish V. K.. ( 2011;). Efflux mediated adaptive and cross resistance to ciprofloxacin and benzalkonium chloride in Pseudomonas aeruginosa of dairy origin. . J Basic Microbiol 51:, 289–295. [CrossRef][PubMed]
    [Google Scholar]
  24. Schmitz F. J., Sadurski R., Kray A., Boos M., Geisel R., Köhrer K., Verhoef J., Fluit A. C.. ( 2000;). Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. . J Antimicrob Chemother 45:, 891–894. [CrossRef][PubMed]
    [Google Scholar]
  25. Sidhu M. S., Heir E., Leegaard T., Wiger K., Holck A.. ( 2002;). Frequency of disinfectant resistance genes and genetic linkage with β-lactamase transposon Tn552 among clinical staphylococci. . Antimicrob Agents Chemother 46:, 2797–2803. [CrossRef][PubMed]
    [Google Scholar]
  26. Theis T., Skurray R. A., Brown M. H.. ( 2007;). Identification of suitable internal controls to study expression of a Staphylococcus aureus multidrug resistance system by quantitative real-time PCR. . J Microbiol Methods 70:, 355–362. [CrossRef][PubMed]
    [Google Scholar]
  27. To M. S., Favrin S., Romanova N., Griffiths M. W.. ( 2002;). Postadaptational resistance to benzalkonium chloride and subsequent physicochemical modifications of Listeria monocytogenes. . Appl Environ Microbiol 68:, 5258–5264. [CrossRef][PubMed]
    [Google Scholar]
  28. Truong-Bolduc Q. C., Dunman P. M., Strahilevitz J., Projan S. J., Hooper D. C.. ( 2005;). MgrA is a multiple regulator of two new efflux pumps in Staphylococcus aureus. . J Bacteriol 187:, 2395–2405. [CrossRef][PubMed]
    [Google Scholar]
  29. Wang C.-C., Lo W.-T., Chu M.-L., Siu L. K.. ( 2004;). Epidemiological typing of community-acquired methicillin-resistant Staphylococcus aureus isolates from children in Taiwan. . Clin Infect Dis 39:, 481–487. [CrossRef][PubMed]
    [Google Scholar]
  30. Wang J.-T., Fang C.-T., Chen Y.-C., Wu C.-L., Chen M.-L., Chang S.-C.. ( 2007;). Staphylococcal cassette chromosome mec in MRSA, Taiwan. . Emerg Infect Dis 13:, 494–497. [CrossRef][PubMed]
    [Google Scholar]
  31. Yoshida H., Bogaki M., Nakamura S., Ubukata K., Konno M.. ( 1990;). Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. . J Bacteriol 172:, 6942–6949.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.073072-0
Loading
/content/journal/jmm/10.1099/jmm.0.073072-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error