1887

Abstract

This study aimed to investigate the prevalence of in potential contamination sources that are not regularly monitored such as free-living urban pigeons and crows, dogs, cats and urban environmental water and to assess the possible impact on the epidemiology of campylobacteriosis in children using multilocus sequence typing (MLST). spp. were detected in 36.2 % of faecal samples of free-living urban birds and in 40.4 % of environmental water samples. A low prevalence of spp. was detected in dogs and cats, with 7.9 and 9.1 %, respectively. Further identification of isolates revealed that environmental water and pet samples were mostly contaminated by other spp. than , whereas was the most prevalent species in faecal samples of free-living birds (35.4 %). This species was the dominant cause of campylobacteriosis in children (91.5 %). In addition, the diversity of MLST types in free-living birds and children was investigated. Clonal complex (CC) 179 was predominant among free-living urban birds; however, only two isolates from children were assigned to this CC. One dog and one child isolate were assigned to the same clonal complex (CC48) and sequence type (ST) 918. The dominant two clonal complexes among the child clinical isolates (CC353 and CC21) were not detected among strains isolated from environmental sources examined in this study. As only two CCs were shared by environmental and child isolates and a high number of novel alleles and STs were found in isolated from free-living urban birds and environmental water, there is probably only a limited link between urban environmental sources and campylobacteriosis in children, particularly in rather cold climatic conditions.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.072892-0
2014-09-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/9/1205.html?itemId=/content/journal/jmm/10.1099/jmm.0.072892-0&mimeType=html&fmt=ahah

References

  1. Amar C., Kittl S., Spreng D., Thomann A., Korczak B. M., Burnens A. P., Kuhnert P.. ( 2014;). Genotypes and antibiotic resistance of canine Campylobacter jejuni isolates. . Vet Microbiol 168:, 124–130. [CrossRef][PubMed]
    [Google Scholar]
  2. Anonymous. ( 2011;). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2009. . EFSA J 9:, 109–135.
    [Google Scholar]
  3. Anonymous. ( 2012;). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2010. . EFSA J 10:, 112–132.
    [Google Scholar]
  4. Anonymous. ( 2013;). The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2011. . EFSA J 11:, 250.
    [Google Scholar]
  5. Brown P. E., Christensen O. F., Clough H. E., Diggle P. J., Hart C. A., Hazel S., Kemp R., Leatherbarrow A. J., Moore A.. & other authors ( 2004;). Frequency and spatial distribution of environmental Campylobacter spp. . Appl Environ Microbiol 70:, 6501–6511. [CrossRef][PubMed]
    [Google Scholar]
  6. Carter P. E., McTavish S. M., Brooks H. J., Campbell D., Collins-Emerson J. M., Midwinter A. C., French N. P.. ( 2009;). Novel clonal complexes with an unknown animal reservoir dominate Campylobacter jejuni isolates from river water in New Zealand. . Appl Environ Microbiol 75:, 6038–6046. [CrossRef][PubMed]
    [Google Scholar]
  7. Colles F. M., Jones K., Harding R. M., Maiden M. C.. ( 2003;). Genetic diversity of Campylobacter jejuni isolates from farm animals and the farm environment. . Appl Environ Microbiol 69:, 7409–7413. [CrossRef][PubMed]
    [Google Scholar]
  8. de Haan C. P., Kivistö R., Hakkinen M., Rautelin H., Hänninen M. L.. ( 2010;). Decreasing trend of overlapping multilocus sequence types between human and chicken Campylobacter jejuni isolates over a decade in Finland. . Appl Environ Microbiol 76:, 5228–5236. [CrossRef][PubMed]
    [Google Scholar]
  9. de Haan C. P., Lampén K., Corander J., Hänninen M. L.. ( 2013;). Multilocus sequence types of environmental Campylobacter jejuni isolates and their similarities to those of human, poultry and bovine C. jejuni isolates. . Zoonoses Public Health 60:, 125–133. [CrossRef][PubMed]
    [Google Scholar]
  10. Dingle K. E., Colles F. M., Wareing D. R., Ure R., Fox A. J., Bolton F. E., Bootsma H. J., Willems R. J., Urwin R., Maiden M. C.. ( 2001;). Multilocus sequence typing system for Campylobacter jejuni. . J Clin Microbiol 39:, 14–23. [CrossRef][PubMed]
    [Google Scholar]
  11. Dingle K. E., Colles F. M., Ure R., Wagenaar J. A., Duim B., Bolton F. J., Fox A. J., Wareing D. R., Maiden M. C.. ( 2002;). Molecular characterization of Campylobacter jejuni clones: a basis for epidemiologic investigation. . Emerg Infect Dis 8:, 949–955. [CrossRef][PubMed]
    [Google Scholar]
  12. Duim B., Godschalk P. C., van den Braak N., Dingle K. E., Dijkstra J. R., Leyde E., van der Plas J., Colles F. M., Endtz H. P.. & other authors ( 2003;). Molecular evidence for dissemination of unique Campylobacter jejuni clones in Curaçao, Netherlands Antilles. . J Clin Microbiol 41:, 5593–5597. [CrossRef][PubMed]
    [Google Scholar]
  13. Feinsinger P., Spears E. E., Poole R. W.. ( 1981;). A simple measure of niche breadth. . Ecology 62:, 27–32. [CrossRef]
    [Google Scholar]
  14. Foley S. L., Lynne A. M., Nayak R.. ( 2009;). Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. . Infect Genet Evol 9:, 430–440. [CrossRef][PubMed]
    [Google Scholar]
  15. French N. P., Midwinter A., Holland B., Collins-Emerson J., Pattison R., Colles F., Carter P.. ( 2009;). Molecular epidemiology of Campylobacter jejuni isolates from wild-bird fecal material in children’s playgrounds. . Appl Environ Microbiol 75:, 779–783. [CrossRef][PubMed]
    [Google Scholar]
  16. Griekspoor P., Colles F. M., McCarthy N. D., Hansbro P. M., Ashhurst-Smith C., Olsen B., Hasselquist D., Maiden M. C., Waldenström J.. ( 2013;). Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds. . Mol Ecol 22:, 1463–1472. [CrossRef][PubMed]
    [Google Scholar]
  17. Hughes L. A., Bennett M., Coffey P., Elliott J., Jones T. R., Jones R. C., Lahuerta-Marin A., Leatherbarrow A. H., McNiffe K.. & other authors ( 2009;). Molecular epidemiology and characterization of Campylobacter spp. isolated from wild bird populations in northern England. . Appl Environ Microbiol 75:, 3007–3015. [CrossRef][PubMed]
    [Google Scholar]
  18. Kärenlampi R., Rautelin H., Schönberg-Norio D., Paulin L., Hänninen M. L.. ( 2007;). Longitudinal study of Finnish Campylobacter jejuni and C. coli isolates from humans, using multilocus sequence typing, including comparison with epidemiological data and isolates from poultry and cattle. . Appl Environ Microbiol 73:, 148–155. [CrossRef][PubMed]
    [Google Scholar]
  19. Kinana A. D., Cardinale E., Tall F., Bahsoun I., Sire J. M., Garin B., Breurec S., Boye C. S., Perrier-Gros-Claude J. D.. ( 2006;). Genetic diversity and quinolone resistance in Campylobacter jejuni isolates from poultry in Senegal. . Appl Environ Microbiol 72:, 3309–3313. [CrossRef][PubMed]
    [Google Scholar]
  20. Kwan P. S., Barrigas M., Bolton F. J., French N. P., Gowland P., Kemp R., Leatherbarrow H., Upton M., Fox A. J.. ( 2008;). Molecular epidemiology of Campylobacter jejuni populations in dairy cattle, wildlife, and the environment in a farmland area. . Appl Environ Microbiol 74:, 5130–5138. [CrossRef][PubMed]
    [Google Scholar]
  21. Magnússon S. H., Guðmundsdóttir S., Reynisson E., Rúnarsson A. R., Harðardóttir H., Gunnarson E., Georgsson F., Reiersen J., Marteinsson V. T.. ( 2011;). Comparison of Campylobacter jejuni isolates from human, food, veterinary and environmental sources in Iceland using PFGE, MLST and fla-SVR sequencing. . J Appl Microbiol 111:, 971–981. [CrossRef][PubMed]
    [Google Scholar]
  22. Manning G., Dowson C. G., Bagnall M. C., Ahmed I. H., West M., Newell D. G.. ( 2003;). Multilocus sequence typing for comparison of veterinary and human isolates of Campylobacter jejuni. . Appl Environ Microbiol 69:, 6370–6379. [CrossRef][PubMed]
    [Google Scholar]
  23. Meinersmann R. J., Berrang M. E., Little E.. ( 2013;). Campylobacter spp. recovered from the Upper Oconee River Watershed, Georgia in a 4-year study. . Microb Ecol 65:, 22–27. [CrossRef][PubMed]
    [Google Scholar]
  24. Mughini Gras L., Smid J. H., Wagenaar J. A., de Boer A. G., Havelaar A. H., Friesema I. H., French N. P., Busani L., van Pelt W.. ( 2012;). Risk factors for campylobacteriosis of chicken, ruminant, and environmental origin: a combined case–control and source attribution analysis. . PLoS ONE 7:, e42599. [CrossRef][PubMed]
    [Google Scholar]
  25. Mughini Gras L., Smid J. H., Wagenaar J. A., Koene M. G., Havelaar A. H., Friesema I. H., French N. P., Flemming C., Galson J. D.. & other authors ( 2013;). Increased risk for Campylobacter jejuni and C. coli infection of pet origin in dog owners and evidence for genetic association between strains causing infection in humans and their pets. . Epidemiol Infect 141:, 2526–2535. [CrossRef][PubMed]
    [Google Scholar]
  26. Parsons B. N., Cody A. J., Porter C. J., Stavisky J. H., Smith J. L., Williams N. J., Leatherbarrow A. J., Hart C. A., Gaskell R. M.. & other authors ( 2009;). Typing of Campylobacter jejuni isolates from dogs by use of multilocus sequence typing and pulsed-field gel electrophoresis. . J Clin Microbiol 47:, 3466–3471. [CrossRef][PubMed]
    [Google Scholar]
  27. Procter T. D., Pearl D. L., Finley R. L., Leonard E. K., Janecko N., Reid-Smith R. J., Weese J. S., Peregrine A. S., Sargeant J. M.. ( 2014;). A cross-sectional study examining Campylobacter and other zoonotic enteric pathogens in dogs that frequent dog parks in three cities in south-western Ontario and risk factors for shedding of Campylobacter spp. . Zoonoses Public Health 61:, 208–218. [CrossRef][PubMed]
    [Google Scholar]
  28. Rosef O., Kapperud G., Lauwers S., Gondrosen B.. ( 1985;). Serotyping of Campylobacter jejuni, Campylobacter coli, and Campylobacter laridis from domestic and wild animals. . Appl Environ Microbiol 49:, 1507–1510.[PubMed]
    [Google Scholar]
  29. Smid J. H., Mughini Gras L., de Boer A. G., French N. P., Havelaar A. H., Wagenaar J. A., van Pelt W.. ( 2013;). Practicalities of using non-local or non-recent multilocus sequence typing data for source attribution in space and time of human campylobacteriosis. . PLoS ONE 8:, e55029. [CrossRef][PubMed]
    [Google Scholar]
  30. Sopwith W., Birtles A., Matthews M., Fox A., Gee S., Painter M., Regan M., Syed Q., Bolton E.. ( 2008;). Identification of potential environmentally adapted Campylobacter jejuni strain, United Kingdom. . Emerg Infect Dis 14:, 1769–1773. [CrossRef][PubMed]
    [Google Scholar]
  31. Tenkate T. D., Stafford R. J.. ( 2001;). Risk factors for campylobacter infection in infants and young children: a matched case–control study. . Epidemiol Infect 127:, 399–404. [CrossRef][PubMed]
    [Google Scholar]
  32. Waldenström J., Broman T., Carlsson I., Hasselquist D., Achterberg R. P., Wagenaar J. A., Olsen B.. ( 2002;). Prevalence of Campylobacter jejuni, Campylobacter lari, and Campylobacter coli in different ecological guilds and taxa of migrating birds. . Appl Environ Microbiol 68:, 5911–5917. [CrossRef][PubMed]
    [Google Scholar]
  33. Wang G., Clark C. G., Taylor T. M., Pucknell C., Barton C., Price L., Woodward D. L., Rodgers F. G.. ( 2002;). Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus.. J Clin Microbiol 40:, 4744–4747. [CrossRef][PubMed]
    [Google Scholar]
  34. Weis A. M., Miller W. A., Byrne B. A., Chouicha N., Boyce W. M., Townsend A. K.. ( 2014;). Prevalence and pathogenic potential of campylobacter isolates from free-living, human-commensal American crows. . Appl Environ Microbiol 80:, 1639–1644. [CrossRef][PubMed]
    [Google Scholar]
  35. Wilson D. J., Gabriel E., Leatherbarrow A. J., Cheesbrough J., Gee S., Bolton E., Fox A., Fearnhead P., Hart C. A., Diggle P. J.. ( 2008;). Tracing the source of campylobacteriosis. . PLoS Genet 4:, e1000203. [CrossRef][PubMed]
    [Google Scholar]
  36. Zhang M., Gu Y., He L., Ran L., Xia S., Han X., Li H., Zhou H., Cui Z., Zhang J.. ( 2010;). Molecular typing and antimicrobial susceptibility profiles of Campylobacter jejuni isolates from north China. . J Med Microbiol 59:, 1171–1177. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.072892-0
Loading
/content/journal/jmm/10.1099/jmm.0.072892-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error