1887

Abstract

bacteraemia (SAB) is associated with substantial morbidity and mortality. By surviving within leukocytes, can evade both immunological defences and antimicrobial drugs, thus facilitating haematogenous dissemination. We performed a systematic review to determine whether antimicrobials with intracellular activity improve outcomes in SAB when used as an adjunct to β-lactam or glycopeptide monotherapy. The Pubmed/MEDLINE, Embase and Cochrane databases were systematically searched for eligible studies that reported on the use of first-line antimicrobials plus a single additional antimicrobial of interest in patients with SAB (any cause). Six relevant studies were identified, all reporting on rifampicin use. Four studies (three randomized controlled trials and one cohort) reported on adults with SAB, including 54 patients treated with adjunctive rifampicin and 44 standard-therapy controls. Estimated across all of these studies, adjunctive rifampicin was associated with trends towards reduced all-cause mortality and reduced clinical or bacteriological failure. The fifth study indicated that adjunctive rifampicin accelerates the resolution of persistent SAB in neonates. Data from the sixth study were considered flawed owing to differences in co-morbidities between groups. Limited data suggest that rifampicin-induced hepatitis is not clinically significant but that drug interactions are. In conclusion, adjunctive rifampicin may improve outcomes in SAB when used as an adjunct to β-lactam or glycopeptide monotherapy.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.072280-0
2014-06-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/6/841.html?itemId=/content/journal/jmm/10.1099/jmm.0.072280-0&mimeType=html&fmt=ahah

References

  1. Ammerlaan H., Seifert H., Harbarth S., Brun-Buisson C., Torres A., Antonelli M., Kluytmans J., Bonten M..Study on European Practices of Infections with Staphylococcus aureus (SEPIA) Study Group ( 2009;). Adequacy of antimicrobial treatment and outcome of Staphylococcus aureus bacteremia in 9 Western European countries. . Clin Infect Dis 49:, 997–1005. [CrossRef][PubMed]
    [Google Scholar]
  2. Aubry-Damon H., Soussy C. J., Courvalin P.. ( 1998;). Characterization of mutations in the rpoB gene that confer rifampin resistance in Staphylococcus aureus. . Antimicrob Agents Chemother 42:, 2590–2594.[PubMed]
    [Google Scholar]
  3. Jung Y. J., Koh Y., Hong S.-B., Chung J. W., Choi S. H., Kim N. J., Kim M.-N., Choi I. S., Han S. Y.. & other authors ( 2010;). Effect of vancomycin plus rifampicin in the treatment of nosocomial methicillin-resistant Staphylococcus aureus pneumonia. . Crit Care Med 38:, 175–180. [CrossRef][PubMed]
    [Google Scholar]
  4. Koziel J., Maciag-Gudowska A., Mikolajczyk T., Bzowska M., Sturdevant D. E., Whitney A. R., Shaw L. N., DeLeo F. R., Potempa J.. ( 2009;). Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. . PLoS ONE 4:, e5210. [CrossRef][PubMed]
    [Google Scholar]
  5. Kropec A., Daschner F. D.. ( 1991;). Penetration into tissues of various drugs active against gram-positive bacteria. . J Antimicrob Chemother 27: (Suppl. B), 9–15. [CrossRef][PubMed]
    [Google Scholar]
  6. Kubica M., Guzik K., Koziel J., Zarebski M., Richter W., Gajkowska B., Golda A., Maciag-Gudowska A., Brix K.. & other authors ( 2008;). A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. . PLoS ONE 3:, e1409. [CrossRef][PubMed]
    [Google Scholar]
  7. Lemaire S., Van Bambeke F., Pierard D., Appelbaum P. C., Tulkens P. M.. ( 2011;). Activity of fusidic acid against extracellular and intracellular Staphylococcus aureus: influence of pH and comparison with linezolid and clindamycin. . Clin Infect Dis 52: (Suppl. 7), S493–S503. [CrossRef][PubMed]
    [Google Scholar]
  8. Levine D. P., Fromm B. S., Reddy B. R.. ( 1991;). Slow response to vancomycin or vancomycin plus rifampin in methicillin-resistant Staphylococcus aureus endocarditis. . Ann Intern Med 115:, 674–680. [CrossRef][PubMed]
    [Google Scholar]
  9. Mandell G. L., Vest T. K.. ( 1972;). Killing of intraleukocytic Staphylococcus aureus by rifampin: in-vitro and in-vivo studies. . J Infect Dis 125:, 486–490. [CrossRef][PubMed]
    [Google Scholar]
  10. Moorman D. R., Mandell G. L.. ( 1981;). Characteristics of rifampin-resistant variants obtained from clinical isolates of Staphylococcus aureus. . Antimicrob Agents Chemother 20:, 709–713. [CrossRef][PubMed]
    [Google Scholar]
  11. Mwangi M. M., Wu S. W., Zhou Y., Sieradzki K., de Lencastre H., Richardson P., Bruce D., Rubin E., Myers E.. & other authors ( 2007;). Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. . Proc Natl Acad Sci U S A 104:, 9451–9456. [CrossRef][PubMed]
    [Google Scholar]
  12. Nielsen S. L., Obel N., Storgaard M., Andersen P. L.. ( 1997;). The effect of quinolones on the intracellular killing of Staphylococcus aureus in neutrophil granulocytes. . J Antimicrob Chemother 39:, 617–622. [CrossRef][PubMed]
    [Google Scholar]
  13. Public Health England ( 2013;). Voluntary Reporting of Staphylococcus aureus Bacteraemia in England, Wales and Northern Ireland, 2012; Health Protection Report (accessed 8 December 2013). .http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1317139661325
  14. Qazi S. N., Harrison S. E., Self T., Williams P., Hill P. J.. ( 2004;). Real-time monitoring of intracellular Staphylococcus aureus replication. . J Bacteriol 186:, 1065–1077. [CrossRef][PubMed]
    [Google Scholar]
  15. Riedel D. J., Weekes E., Forrest G. N.. ( 2008;). Addition of rifampin to standard therapy for treatment of native valve infective endocarditis caused by Staphylococcus aureus. . Antimicrob Agents Chemother 52:, 2463–2467. [CrossRef][PubMed]
    [Google Scholar]
  16. Sakoulas G., Moise-Broder P. A., Schentag J., Forrest A., Moellering R. C. Jr, Eliopoulos G. M.. ( 2004;). Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. . J Clin Microbiol 42:, 2398–2402. [CrossRef][PubMed]
    [Google Scholar]
  17. Sandberg A., Hessler J. H., Skov R. L., Blom J., Frimodt-Møller N.. ( 2009;). Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model. . Antimicrob Agents Chemother 53:, 1874–1883. [CrossRef][PubMed]
    [Google Scholar]
  18. Tan T. Q., Mason E. O. Jr, Ou C. N., Kaplan S. L.. ( 1993;). Use of intravenous rifampin in neonates with persistent staphylococcal bacteremia. . Antimicrob Agents Chemother 37:, 2401–2406. [CrossRef][PubMed]
    [Google Scholar]
  19. Thwaites G. E., Gant V.. ( 2011;). Are bloodstream leukocytes Trojan Horses for the metastasis of Staphylococcus aureus?. Nat Rev Microbiol 9:, 215–222. [CrossRef][PubMed]
    [Google Scholar]
  20. Thwaites G., Auckland C., Barlow G., Cunningham R., Davies G., Edgeworth J., Greig J., Hopkins S., Jeyaratnam D.. & other authors ( 2012;). Adjunctive rifampicin to reduce early mortality from Staphylococcus aureus bacteraemia (ARREST): study protocol for a randomised controlled trial. . Trials 13:, 241. [CrossRef][PubMed]
    [Google Scholar]
  21. Van der Auwera P., Meunier-Carpentier F., Klastersky J.. ( 1983;). Clinical study of combination therapy with oxacillin and rifampin for staphylococcal infections. . Rev Infect Dis 5: (Suppl. 3), S515–S521. [CrossRef][PubMed]
    [Google Scholar]
  22. Van der Auwera P., Klastersky J., Thys J. P., Meunier-Carpentier F., Legrand J. C.. ( 1985;). Double-blind, placebo-controlled study of oxacillin combined with rifampin in the treatment of staphylococcal infections. . Antimicrob Agents Chemother 28:, 467–472. [CrossRef][PubMed]
    [Google Scholar]
  23. Voyich J. M., Vuong C., DeWald M., Nygaard T. K., Kocianova S., Griffith S., Jones J., Iverson C., Sturdevant D. E.. & other authors ( 2009;). The SaeR/S gene regulatory system is essential for innate immune evasion by Staphylococcus aureus. . J Infect Dis 199:, 1698–1706. [CrossRef][PubMed]
    [Google Scholar]
  24. Wichelhaus T. A., Schäfer V., Brade V., Böddinghaus B.. ( 1999;). Molecular characterization of rpoB mutations conferring cross-resistance to rifamycins on methicillin-resistant Staphylococcus aureus. . Antimicrob Agents Chemother 43:, 2813–2816.[PubMed]
    [Google Scholar]
  25. Yzerman E. P. F., Boelens H. A. M., Vogel M., Verbrugh H. A.. ( 1998;). Efficacy and safety of teicoplanin plus rifampicin in the treatment of bacteraemic infections caused by Staphylococcus aureus.. J Antimicrob Chemother 42:, 233–239. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.072280-0
Loading
/content/journal/jmm/10.1099/jmm.0.072280-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error