1887

Abstract

The soluble proteome of three strains of varying pathogenic potential, designated B-1, Tra 5/5 and 027 SM, were compared using differential in-gel electrophoresis in which the proteins of each strain were labelled with CyDyes. This enabled visual inspection of the 2D profiles of strains and identification of differentially expressed proteins using image analysis software. Unlabelled protein reference maps of the predominant proteins were then generated for each strain using 2D gel electrophoresis followed by protein sequencing of each spot using a Reflectron matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometer. Increased coverage of the proteome was achieved using 1D gel electrophoresis in a bottom-up approach using LC-MS/MS of 1 cm gel slices. A total of 888 different proteins were detected by comparative analysis of isolates grown in parallel for 64 h on blood agar plates. Of these, only 38 % were shared between all isolates. One hundred and ten proteins were identified as showing ≥2-fold difference in expression between strains. Differential expression was shown in a number of potential virulence and colonization factors. Toxin B was detected in the more virulent strains B-1 and 027 SM, but not in the lower virulent strain Tra 5/5, despite all strains possessing an intact pathogenicity locus. The S-layer protein (Cwp2) was identified in strains 027 SM and Tra 5/5 but not strain B-1, and differences in the post-translational modification of SlpA were noted for strain B-1. The variant S-layer profile of strain B-1 was confirmed by genomic comparison, which showed a 58 kb insertion in the S-layer operon of strain B-1. Differential post-translation modification events were also noted in flagellar proteins, thought to be due to differential glycosylation. This study highlights genomic and proteomic variation of different strains and suggests a number of factors may play a role in mediating the varying virulence of these different strains.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.070409-0
2014-04-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/4/489.html?itemId=/content/journal/jmm/10.1099/jmm.0.070409-0&mimeType=html&fmt=ahah

References

  1. Alfa M. J. , Kabani A. , Lyerly D. , Moncrief S. , Neville L. M. , Al-Barrak A. , Harding G. K. H. , Dyck B. , Olekson K. , Embil J. M. . ( 2000; ). Characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile responsible for a nosocomial outbreak of Clostridium difficile-associated diarrhea. . J Clin Microbiol 38:, 2706–2714.[PubMed]
    [Google Scholar]
  2. Anonymous . ( 2005; ). Outbreak of Clostridium difficile infection in a hospital in south east England. . CDR Weekly 15:.
    [Google Scholar]
  3. Aubry A. , Hussack G. , Chen W. , KuoLee R. , Twine S. M. , Fulton K. M. , Foote S. , Carrillo C. D. , Tanha J. , Logan S. M. . ( 2012; ). Modulation of toxin production by the flagellar regulon in Clostridium difficile . . Infect Immun 80:, 3521–3532. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ausiello C. M. , Cerquetti M. , Fedele G. , Spensieri F. , Palazzo R. , Nasso M. , Frezza S. , Mastrantonio P. . ( 2006; ). Surface layer proteins from Clostridium difficile induce inflammatory and regulatory cytokines in human monocytes and dendritic cells. . Microbes Infect 8:, 2640–2646. [CrossRef] [PubMed]
    [Google Scholar]
  5. Barbut F. , Mastrantonio P. , Delmée M. , Brazier J. , Kuijper E. , Poxton I. . European Study Group on Clostridium difficile (ESGCD) ( 2007; ). Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates. . Clin Microbiol Infect 13:, 1048–1057. [CrossRef] [PubMed]
    [Google Scholar]
  6. Boetzkes A. , Felkel K. W. , Zeiser J. , Jochim N. , Just I. , Pich A. . ( 2012; ). Secretome analysis of Clostridium difficile strains. . Arch Microbiol 194:, 675–687. [CrossRef] [PubMed]
    [Google Scholar]
  7. Boin M. A. , Austin M. J. , Häse C. C. . ( 2004; ). Chemotaxis in Vibrio cholerae . . FEMS Microbiol Lett 239:, 1–8. [CrossRef] [PubMed]
    [Google Scholar]
  8. Borriello S. P. , Barclay F. E. . ( 1985; ). Protection of hamsters against Clostridium difficile ileocaecitis by prior colonisation with non-pathogenic strains. . J Med Microbiol 19:, 339–350. [CrossRef] [PubMed]
    [Google Scholar]
  9. Borriello S. P. , Bhatt R. . ( 1995; ) Chemotaxis by Clostridium difficile . . In Medical and Dental Aspects of Anaerobes, p. 241. Edited by Duerden B. I. , Wade J. G. , Brazier J. S. , Eley A. , Wren B. , Hudson M. J. . . Northwood, Middlesex, UK:: Science Reviews;.
    [Google Scholar]
  10. Borriello S. P. , Ketley J. M. , Mitchell T. J. , Barclay F. E. , Welch A. R. , Price A. B. , Stephen J. . ( 1987; ). Clostridium difficile – a spectrum of virulence and analysis of putative virulence determinants in the hamster model of antibiotic-associated colitis. . J Med Microbiol 24:, 53–64. [CrossRef] [PubMed]
    [Google Scholar]
  11. Borriello S. P. , Davies H. A. , Barclay F. E. . ( 1988; ). Detection of fimbriae amongst strains of Clostridium difficile . . FEMS Microbiol Lett 49:, 65–67. [CrossRef]
    [Google Scholar]
  12. Borriello S. P. , Wren B. W. , Hyde S. , Seddon S. V. , Sibbons P. , Krishna M. M. , Tabaqchali S. , Manek S. , Price A. B. . ( 1992; ). Molecular, immunological, and biological characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile . . Infect Immun 60:, 4192–4199.[PubMed]
    [Google Scholar]
  13. Calabi E. , Fairweather N. . ( 2002b; ). Patterns of sequence conservation in the S-layer proteins and related sequences in Clostridium difficile . . J Bacteriol 184:, 3886–3897. [CrossRef] [PubMed]
    [Google Scholar]
  14. Calabi E. , Ward S. , Wren B. , Paxton T. , Panico M. , Morris H. , Dell A. , Dougan G. , Fairweather N. . ( 2001; ). Molecular characterization of the surface layer proteins from Clostridium difficile . . Mol Microbiol 40:, 1187–1199. [CrossRef] [PubMed]
    [Google Scholar]
  15. Carter G. P. , Rood J. I. , Lyras D. . ( 2012; ). The role of Toxin A and Toxin B in the virulence of Clostridium difficile . . Trends Microbiol 20:, 21–29. [CrossRef]
    [Google Scholar]
  16. Calabi E. , Calabi F. , Phillips A. D. , Fairweather N. F. . ( 2002a; ). Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. . Infect Immun 70:, 5770–5778. [CrossRef] [PubMed]
    [Google Scholar]
  17. Carter G. P. , Douce G. R. , Govind R. , Howarth P. M. , Mackin K. E. , Spencer J. , Buckley A. M. , Antunes A. , Kotsanas D. . & other authors ( 2011; ). The anti-sigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile . . PLoS Pathog 7:, e1002317. [CrossRef] [PubMed]
    [Google Scholar]
  18. Cartman S. T. , Kelly M. L. , Heeg D. , Heap J. T. , Minton N. P. . ( 2012; ). Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. . Appl Environ Microbiol 78:, 4683–4690. [CrossRef] [PubMed]
    [Google Scholar]
  19. Cerquetti M. , Serafino A. , Sebastianelli A. , Mastrantonio P. . ( 2002; ). Binding of Clostridium difficile to Caco-2 epithelial cell line and to extracellular matrix proteins. . FEMS Immunol Med Microbiol 32:, 211–218. [CrossRef] [PubMed]
    [Google Scholar]
  20. Chen J. W. , Scaria J. , Mao C. , Sobral B. , Zhang S. , Lawley T. , Chang Y. F. . ( 2013; ). Proteomic comparison of historic and recently emerged hypervirulent Clostridium difficile strains. . J Proteome Res 12:, 1151–1161. [CrossRef] [PubMed]
    [Google Scholar]
  21. Chumbler N. M. , Farrow M. A. , Lapierre L. A. , Franklin J. L. , Haslam D. B. , Goldenring J. R. , Lacy D. B. . ( 2012; ). Clostridium difficile toxin B causes epithelial cell necrosis through an autoprocessing-independent mechanism. . PLoS Pathog 8:, e1003072. [CrossRef] [PubMed]
    [Google Scholar]
  22. Dang T. H. T. , de la Riva L. , Fagan R. P. , Storck E. M. , Heal W. P. , Janoir C. , Fairweather N. F. , Tate E. W. . ( 2010; ). Chemical probes of surface layer biogenesis in Clostridium difficile . . ACS Chem Biol 5:, 279–285. [CrossRef] [PubMed]
    [Google Scholar]
  23. Darling A. E. , Mau B. , Perna N. T. . ( 2010; ). progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. . PLoS ONE 5:, e11147. [CrossRef] [PubMed]
    [Google Scholar]
  24. Denève C. , Janoir C. , Poilane I. , Fantinato C. , Collignon A. . ( 2009; ). New trends in Clostridium difficile virulence and pathogenesis. . Int J Antimicrob Agents 33: (Suppl. 1), S24–S28. [CrossRef] [PubMed]
    [Google Scholar]
  25. Dingle T. C. , Mulvey G. L. , Armstrong G. D. . ( 2011; ). Mutagenic analysis of the Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters. . Infect Immun 79:, 4061–4067. [CrossRef] [PubMed]
    [Google Scholar]
  26. Dingle K. E. , Didelot X. , Ansari M. A. , Eyre D. W. , Vaughan A. , Griffiths D. , Ip C. L. C. , Batty E. M. , Golubchik T. . & other authors ( 2013; ). Recombinational switching of the Clostridium difficile S-layer and a novel glycosylation gene cluster revealed by large-scale whole-genome sequencing. . J Infect Dis 207:, 675–686. [CrossRef] [PubMed]
    [Google Scholar]
  27. Dupuy B. , Govind R. , Antunes A. , Matamouros S. . ( 2008; ). Clostridium difficile toxin synthesis is negatively regulated by TcdC. . J Med Microbiol 57:, 685–689. [CrossRef] [PubMed]
    [Google Scholar]
  28. Encheva V. , Shah H. N. , Gharbia S. E. . ( 2009; ). Proteomic analysis of the adaptive response of Salmonella enterica serovar Typhimurium to growth under anaerobic conditions. . Microbiology 155:, 2429–2441. [CrossRef] [PubMed]
    [Google Scholar]
  29. Fagan R. P. , Fairweather N. F. . ( 2011; ). Clostridium difficile has two parallel and essential Sec secretion systems. . J Biol Chem 286:, 27483–27493. [CrossRef] [PubMed]
    [Google Scholar]
  30. Fagan R. P. , Janoir C. , Collignon A. , Mastrantonio P. , Poxton I. R. , Fairweather N. F. . ( 2011; ). A proposed nomenclature for cell wall proteins of Clostridium difficile . . J Med Microbiol 60:, 1225–1228. [CrossRef] [PubMed]
    [Google Scholar]
  31. Freeman J. , Baines S. D. , Saxton K. , Wilcox M. H. . ( 2007; ). Effect of metronidazole on growth and toxin production by epidemic Clostridium difficile PCR ribotypes 001 and 027 in a human gut model. . J Antimicrob Chemother 60:, 83–91. [CrossRef] [PubMed]
    [Google Scholar]
  32. Ghantoji S. S. , Sail K. , Lairson D. R. , DuPont H. L. , Garey K. W. . ( 2010; ). Economic healthcare costs of Clostridium difficile infection: a systematic review. . J Hosp Infect 74:, 309–318. [CrossRef] [PubMed]
    [Google Scholar]
  33. He M. , Sebaihia M. , Lawley T. D. , Stabler R. A. , Dawson L. F. , Martin M. J. , Holt K. E. , Seth-Smith H. M. B. , Quail M. A. . & other authors ( 2010; ). Evolutionary dynamics of Clostridium difficile over short and long time scales. . Proc Natl Acad Sci U S A 107:, 7527–7532. [CrossRef] [PubMed]
    [Google Scholar]
  34. Hecht G. , Koutsouris A. , Pothoulakis C. , LaMont J. T. , Madara J. L. . ( 1992; ). Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. . Gastroenterology 102:, 416–423.[PubMed]
    [Google Scholar]
  35. Jain S. , Graham R. L. J. , McMullan G. , Ternan N. G. . ( 2010; ). Proteomic analysis of the insoluble subproteome of Clostridium difficile strain 630. . FEMS Microbiol Lett 312:, 151–159. [CrossRef] [PubMed]
    [Google Scholar]
  36. Janvilisri T. , Scaria J. , Teng C. H. , McDonough S. P. , Gleed R. D. , Fubini S. L. , Zhang S. , Akey B. , Chang Y. F. . ( 2012; ). Temporal differential proteomes of Clostridium difficile in the pig ileal-ligated loop model. . PLoS ONE 7:, e45608. [CrossRef] [PubMed]
    [Google Scholar]
  37. Karjalainen T. , Waligora-Dupriet A. J. , Cerquetti M. , Spigaglia P. , Maggioni A. , Mauri P. , Mastrantonio P. . ( 2001; ). Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile . . Infect Immun 69:, 3442–3446. [CrossRef] [PubMed]
    [Google Scholar]
  38. Kelly C. P. , LaMont J. T. . ( 1998; ). Clostridium difficile infection. . Annu Rev Med 49:, 375–390. [CrossRef] [PubMed]
    [Google Scholar]
  39. Kirby J. M. , Ahern H. , Roberts A. K. , Kumar V. , Freeman Z. , Acharya K. R. , Shone C. C. . ( 2009; ). Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile . . J Biol Chem 284:, 34666–34673. [CrossRef] [PubMed]
    [Google Scholar]
  40. Kuehne S. A. , Cartman S. T. , Heap J. T. , Kelly M. L. , Cockayne A. , Minton N. P. . ( 2010; ). The role of toxin A and toxin B in Clostridium difficile infection. . Nature 467:, 711–713. [CrossRef] [PubMed]
    [Google Scholar]
  41. Larson H. E. , Price A. B. , Honour P. , Borriello S. P. . ( 1978; ). Clostridium difficile and the aetiology of pseudomembranous colitis. . Lancet 311:, 1063–1066. [CrossRef] [PubMed]
    [Google Scholar]
  42. Larson H. E. , Barclay F. E. , Honour P. , Hill I. D. . ( 1982; ). Epidemiology of Clostridium difficile in infants. . J Infect Dis 146:, 727–733. [CrossRef] [PubMed]
    [Google Scholar]
  43. Lawley T. D. , Croucher N. J. , Yu L. , Clare S. , Sebaihia M. , Goulding D. , Pickard D. J. , Parkhill J. , Choudhary J. , Dougan G. . ( 2009; ). Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. . J Bacteriol 191:, 5377–5386. [CrossRef] [PubMed]
    [Google Scholar]
  44. Logan S. M. . ( 2006; ). Flagellar glycosylation – a new component of the motility repertoire. ? Microbiology 152:, 1249–1262. [CrossRef] [PubMed]
    [Google Scholar]
  45. Lyras D. , O’Connor J. R. , Howarth P. M. , Sambol S. P. , Carter G. P. , Phumoonna T. , Poon R. , Adams V. , Vedantam G. . & other authors ( 2009; ). Toxin B is essential for virulence of Clostridium difficile . . Nature 458:, 1176–1179. [CrossRef] [PubMed]
    [Google Scholar]
  46. McCoubrey J. , Poxton I. R. . ( 2001; ). Variation in the surface layer proteins of Clostridium difficile . . FEMS Immunol Med Microbiol 31:, 131–135. [CrossRef] [PubMed]
    [Google Scholar]
  47. McDonald L. C. , Killgore G. E. , Thompson A. , Owens R. C. Jr , Kazakova S. V. , Sambol S. P. , Johnson S. , Gerding D. N. . ( 2005; ). An epidemic, toxin gene-variant strain of Clostridium difficile . . N Engl J Med 353:, 2433–2441. [CrossRef] [PubMed]
    [Google Scholar]
  48. McQuade R. , Roxas B. , Viswanathan V. K. , Vedantam G. . ( 2012; ). Clostridium difficile clinical isolates exhibit variable susceptibility and proteome alterations upon exposure to mammalian cationic antimicrobial peptides. . Anaerobe 18:, 614–620. [CrossRef] [PubMed]
    [Google Scholar]
  49. Monot M. , Boursaux-Eude C. , Thibonnier M. , Vallenet D. , Moszer I. , Medigue C. , Martin-Verstraete I. , Dupuy B. . ( 2011; ). Reannotation of the genome sequence of Clostridium difficile strain 630. . J Med Microbiol 60:, 1193–1199. [CrossRef] [PubMed]
    [Google Scholar]
  50. Paredes-Sabja D. , Sarker M. R. . ( 2012; ). Adherence of Clostridium difficile spores to Caco-2 cells in culture. . J Med Microbiol 61:, 1208–1218. [CrossRef] [PubMed]
    [Google Scholar]
  51. Ramos H. C. , Rumbo M. , Sirard J. C. . ( 2004; ). Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. . Trends Microbiol 12:, 509–517. [CrossRef] [PubMed]
    [Google Scholar]
  52. Rupnik M. . ( 2008; ). Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes. . FEMS Microbiol Rev 32:, 541–555. [CrossRef] [PubMed]
    [Google Scholar]
  53. Sára M. , Sleytr U. B. . ( 2000; ). S-Layer proteins. . J Bacteriol 182:, 859–868. [CrossRef] [PubMed]
    [Google Scholar]
  54. Savariau-Lacomme M. P. , Lebarbier C. , Karjalainen T. , Collignon A. , Janoir C. . ( 2003; ). Transcription and analysis of polymorphism in a cluster of genes encoding surface-associated proteins of Clostridium difficile . . J Bacteriol 185:, 4461–4470. [CrossRef] [PubMed]
    [Google Scholar]
  55. Savidge T. C. , Pan W. H. , Newman P. , O’brien M. , Anton P. M. , Pothoulakis C. . ( 2003; ). Clostridium difficile toxin B is an inflammatory enterotoxin in human intestine. . Gastroenterology 125:, 413–420. [CrossRef] [PubMed]
    [Google Scholar]
  56. Sebaihia M. , Wren B. W. , Mullany P. , Fairweather N. F. , Minton N. , Stabler R. , Thomson N. R. , Roberts A. P. , Cerdeño-Tárraga A. M. . & other authors ( 2006; ). The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. . Nat Genet 38:, 779–786. [CrossRef] [PubMed]
    [Google Scholar]
  57. Smith A. . ( 2005; ). Outbreak of Clostridium difficile infection in an English hospital linked to hypertoxin-producing strains in Canada and the US. . Euro Surveill 10:, E050630.2. [CrossRef] [PubMed]
    [Google Scholar]
  58. Spigaglia P. , Barbanti F. , Mastrantonio P. . ( 2011; ). Surface layer protein A variant of Clostridium difficile PCR-ribotype 027. . Emerg Infect Dis 17:, 317–319. [CrossRef] [PubMed]
    [Google Scholar]
  59. Stabler R. A. , Gerding D. N. , Songer J. G. , Drudy D. , Brazier J. S. , Trinh H. T. , Witney A. A. , Hinds J. , Wren B. W. . ( 2006; ). Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. . J Bacteriol 188:, 7297–7305. [CrossRef] [PubMed]
    [Google Scholar]
  60. Stabler R. A. , He M. , Dawson L. , Martin M. , Valiente E. , Corton C. , Lawley T. D. , Sebaihia M. , Quail M. A. . & other authors ( 2009; ). Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. . Genome Biol 10:, R102. [CrossRef] [PubMed]
    [Google Scholar]
  61. Tasteyre A. , Barc M. C. , Karjalainen T. , Dodson P. , Hyde S. , Bourlioux P. , Borriello P. . ( 2000; ). A Clostridium difficile gene encoding flagellin. . Microbiology 146:, 957–966.[PubMed]
    [Google Scholar]
  62. Tasteyre A. , Barc M. C. , Collignon A. , Boureau H. , Karjalainen T. . ( 2001; ). Role of FliC and FliD flagellar proteins of Clostridium difficile in adherence and gut colonization. . Infect Immun 69:, 7937–7940. [CrossRef] [PubMed]
    [Google Scholar]
  63. Twine S. M. , Reid C. W. , Aubry A. , McMullin D. R. , Fulton K. M. , Austin J. , Logan S. M. . ( 2009; ). Motility and flagellar glycosylation in Clostridium difficile . . J Bacteriol 191:, 7050–7062. [CrossRef] [PubMed]
    [Google Scholar]
  64. van Alphen L. B. , Wuhrer M. , Bleumink-Pluym N. M. C. , Hensbergen P. J. , Deelder A. M. , van Putten J. P. M. . ( 2008; ). A functional Campylobacter jejuni maf4 gene results in novel glycoforms on flagellin and altered autoagglutination behaviour. . Microbiology 154:, 3385–3397. [CrossRef] [PubMed]
    [Google Scholar]
  65. Vohra P. , Poxton I. R. . ( 2011; ). Comparison of toxin and spore production in clinically relevant strains of Clostridium difficile . . Microbiology 157:, 1343–1353. [CrossRef] [PubMed]
    [Google Scholar]
  66. Waligora A. J. , Barc M. C. , Bourlioux P. , Collignon A. , Karjalainen T. . ( 1999; ). Clostridium difficile cell attachment is modified by environmental factors. . Appl Environ Microbiol 65:, 4234–4238.[PubMed]
    [Google Scholar]
  67. Waligora A. J. , Hennequin C. , Mullany P. , Bourlioux P. , Collignon A. , Karjalainen T. . ( 2001; ). Characterization of a cell surface protein of Clostridium difficile with adhesive properties. . Infect Immun 69:, 2144–2153. [CrossRef] [PubMed]
    [Google Scholar]
  68. Wang Q. , Suzuki A. , Mariconda S. , Porwollik S. , Harshey R. M. . ( 2005; ). Sensing wetness: a new role for the bacterial flagellum. . EMBO J 24:, 2034–2042. [CrossRef] [PubMed]
    [Google Scholar]
  69. Warny M. , Pepin J. , Fang A. , Killgore G. , Thompson A. , Brazier J. , Frost E. , McDonald L. C. . ( 2005; ). Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. . Lancet 366:, 1079–1084. [CrossRef] [PubMed]
    [Google Scholar]
  70. Wiegand P. N. , Nathwani D. , Wilcox M. H. , Stephens J. , Shelbaya A. , Haider S. . ( 2012; ). Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare-facility-acquired infection. . J Hosp Infect 81:, 1–14. [CrossRef] [PubMed]
    [Google Scholar]
  71. Wright A. , Wait R. , Begum S. , Crossett B. , Nagy J. , Brown K. , Fairweather N. . ( 2005; ). Proteomic analysis of cell surface proteins from Clostridium difficile . . Proteomics 5:, 2443–2452. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.070409-0
Loading
/content/journal/jmm/10.1099/jmm.0.070409-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error