1887

Abstract

We performed a comparative molecular analysis on three types of clinically isolated spp.: epidemic sequence types (STs) of (epidemic ST-AB), non-epidemic sequence types of (non-epidemic ST-AB) and non- spp. A total of 87 isolates – 46 , 25 and 16 – from 43 hospitals were analysed. Of these, 31 isolates were ST1 or ST2 according to the Pasteur Institute multilocus sequence typing scheme and were defined as epidemic ST-AB. The other 15 isolates were defined as non-epidemic ST-AB. The epidemic ST-AB isolates harboured the gene or had an IS element upstream of , or both, whereas non-epidemic ST-AB and non- spp. isolates harboured or metallo-β-lactamase genes, or both. The proportion of multidrug-resistant isolates was significantly higher in the epidemic ST-AB isolates (48 %) than that in the other types of isolates (5 %) (<0.05). In addition, epidemic ST-AB isolates exhibited a relatively higher proportion of fluoroquinolone resistance. We demonstrated that, in terms of genotypes and phenotypes of antimicrobial resistance, non-epidemic ST-AB isolates shared more similarity with non- spp. isolates than with epidemic ST-AB isolates, regardless of bacterial species. In addition, this study revealed that, even in Japan, where IMP-type metallo-β-lactamase producers are endemic, epidemic ST-AB harbouring have not yet emerged.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.069138-0
2014-06-01
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/6/870.html?itemId=/content/journal/jmm/10.1099/jmm.0.069138-0&mimeType=html&fmt=ahah

References

  1. Bartual S. G., Seifert H., Hippler C., Luzon M. A. D., Wisplinghoff H., Rodríguez-Valera F. 2005; Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol 43:4382–4390 [View Article][PubMed]
    [Google Scholar]
  2. Cantón R., Akóva M., Carmeli Y., Giske C. G., Glupczynski Y., Gniadkowski M., Livermore D. M., Miriagou V., Naas T.& other authors ( 2012; Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect 18:413–431 [View Article][PubMed]
    [Google Scholar]
  3. Chu Y. W., Afzal-Shah M., Houang E. T., Palepou M. I., Lyon D. J., Woodford N., Livermore D. M. 2001; IMP-4, a novel metallo-β-lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998. Antimicrob Agents Chemother 45:710–714 [View Article][PubMed]
    [Google Scholar]
  4. CLSI 2012; Performance Standards for Antimicrobial Susceptibility Testing; 22nd informational supplement M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  5. Cornaglia G., Riccio M. L., Mazzariol A., Lauretti L., Fontana R., Rossolini G. M. 1999; Appearance of IMP-1 metallo-β-lactamase in Europe. Lancet 353:899–900 [View Article][PubMed]
    [Google Scholar]
  6. Da Silva G. J., Correia M., Vital C., Ribeiro G., Sousa J. C., Leitão R., Peixe L., Duarte A. 2002; Molecular characterization of blaIMP-5, a new integron-borne metallo-β-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal. FEMS Microbiol Lett 215:33–39[PubMed]
    [Google Scholar]
  7. Da Silva G. J., Mendonça N., Batista G., Duarte A. 2010; Sequence types of Portuguese carbapenem-resistant Acinetobacter baumannii isolates collected over 10 years. J Antimicrob Chemother 65:2254–2256 [View Article][PubMed]
    [Google Scholar]
  8. Di Popolo A., Giannouli M., Triassi M., Brisse S., Zarrilli R. 2011; Molecular epidemiological investigation of multidrug-resistant Acinetobacter baumannii strains in four Mediterranean countries with a multilocus sequence typing scheme. Clin Microbiol Infect 17:197–201 [View Article][PubMed]
    [Google Scholar]
  9. Diancourt L., Passet V., Nemec A., Dijkshoorn L., Brisse S. 2010; The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS ONE 5:e10034 [View Article][PubMed]
    [Google Scholar]
  10. Dijkshoorn L., Aucken H., Gerner-Smidt P., Janssen P., Kaufmann M. E., Garaizar J., Ursing J., Pitt T. L. 1996; Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. J Clin Microbiol 34:1519–1525[PubMed]
    [Google Scholar]
  11. Dijkshoorn L., Nemec A., Seifert H. 2007; An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5:939–951 [View Article][PubMed]
    [Google Scholar]
  12. Dolzani L., Tonin E., Lagatolla C., Prandin L., Monti-Bragadin C. 1995; Identification of Acinetobacter isolates in the A. calcoaceticusA. baumannii complex by restriction analysis of the 16S–23S rRNA intergenic-spacer sequences. J Clin Microbiol 33:1108–1113[PubMed]
    [Google Scholar]
  13. Higgins P. G., Dammhayn C., Hackel M., Seifert H. 2010; Global spread of carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother 65:233–238 [View Article][PubMed]
    [Google Scholar]
  14. Kouyama Y., Harada S., Ishii Y., Saga T., Yoshizumi A., Tateda K., Yamaguchi K. 2012; Molecular characterization of carbapenem-non-susceptible Acinetobacter spp. in Japan: predominance of multidrug-resistant Acinetobacter baumannii clonal complex 92 and IMP-type metallo-β-lactamase-producing non-baumannii Acinetobacter species. J Infect Chemother 18:522–528 [View Article][PubMed]
    [Google Scholar]
  15. La Scola B., Gundi V. A. K. B., Khamis A., Raoult D. 2006; Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol 44:827–832 [View Article][PubMed]
    [Google Scholar]
  16. Lee J. H., Choi C. H., Kang H. Y., Lee J. Y., Kim J., Lee Y. C., Seol S. Y., Cho D. T., Kim K. W.& other authors ( 2007; Differences in phenotypic and genotypic traits against antimicrobial agents between Acinetobacter baumannii and Acinetobacter genomic species 13TU. J Antimicrob Chemother 59:633–639 [View Article][PubMed]
    [Google Scholar]
  17. Lee M. F., Peng C. F., Hsu H. J., Chen Y. H. 2008; Molecular characterisation of the metallo-β-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan. Int J Antimicrob Agents 32:475–480 [View Article][PubMed]
    [Google Scholar]
  18. Lee K., Yong D., Jeong S. H., Chong Y. 2011; Multidrug-resistant Acinetobacter spp.: increasingly problematic nosocomial pathogens. Yonsei Med J 52:879–891 [View Article][PubMed]
    [Google Scholar]
  19. Matsui M., Suzuki S., Suzuki M., Arakawa Y., Shibayama K. 2013; Rapid discrimination of Acinetobacter baumannii international clone II lineage by pyrosequencing SNP analyses of blaOXA-51-like genes. J Microbiol Methods 94:121–124 [View Article][PubMed]
    [Google Scholar]
  20. Mugnier P. D., Poirel L., Naas T., Nordmann P. 2010; Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis 16:35–40 [View Article][PubMed]
    [Google Scholar]
  21. Nishio H., Komatsu M., Shibata N., Shimakawa K., Sueyoshi N., Ura T., Satoh K., Toyokawa M., Nakamura T.& other authors ( 2004; Metallo-β-lactamase-producing Gram-negative bacilli: laboratory-based surveillance in cooperation with 13 clinical laboratories in the Kinki region of Japan. J Clin Microbiol 42:5256–5263 [View Article][PubMed]
    [Google Scholar]
  22. Poirel L., Nordmann P. 2006; Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-58 in Acinetobacter baumannii. Antimicrob Agents Chemother 50:1442–1448 [View Article][PubMed]
    [Google Scholar]
  23. Shibata N., Doi Y., Yamane K., Yagi T., Kurokawa H., Shibayama K., Kato H., Kai K., Arakawa Y. 2003; PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by Gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol 41:5407–5413 [View Article][PubMed]
    [Google Scholar]
  24. Sung J. Y., Kwon K. C., Park J. W., Kim Y. S., Kim J. M., Shin K. S., Kim J. W., Ko C. S., Shin S. Y. other authors 2008; [Dissemination of IMP-1 and OXA type β-lactamase in carbapenem-resistant Acinetobacter baumannii.]. Korean J Lab Med 28:16–23 (in Korean) [View Article][PubMed]
    [Google Scholar]
  25. Suzuki S., Matsui M., Suzuki M., Sugita A., Kosuge Y., Kodama N., Ichise Y., Shibayama K. 2013; Detection of tripoli metallo-β-lactamase 2 (TMB-2), a variant of blaTMB-1, in clinical isolates of Acinetobacter spp. in Japan. J Antimicrob Chemother 68:1441–1442 [View Article][PubMed]
    [Google Scholar]
  26. Turton J. F., Ward M. E., Woodford N., Kaufmann M. E., Pike R., Livermore D. M., Pitt T. L. 2006; The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 258:72–77 [View Article][PubMed]
    [Google Scholar]
  27. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G. B., Livermore D. M. 2006; Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp.. Int J Antimicrob Agents 27:351–353 [View Article][PubMed]
    [Google Scholar]
  28. Zarrilli R., Pournaras S., Giannouli M., Tsakris A. 2013; Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. Int J Antimicrob Agents 41:11–19 [View Article][PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.069138-0
Loading
/content/journal/jmm/10.1099/jmm.0.069138-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error