1887

Abstract

We performed a comparative molecular analysis on three types of clinically isolated spp.: epidemic sequence types (STs) of (epidemic ST-AB), non-epidemic sequence types of (non-epidemic ST-AB) and non- spp. A total of 87 isolates – 46 , 25 and 16 – from 43 hospitals were analysed. Of these, 31 isolates were ST1 or ST2 according to the Pasteur Institute multilocus sequence typing scheme and were defined as epidemic ST-AB. The other 15 isolates were defined as non-epidemic ST-AB. The epidemic ST-AB isolates harboured the gene or had an IS element upstream of , or both, whereas non-epidemic ST-AB and non- spp. isolates harboured or metallo-β-lactamase genes, or both. The proportion of multidrug-resistant isolates was significantly higher in the epidemic ST-AB isolates (48 %) than that in the other types of isolates (5 %) (<0.05). In addition, epidemic ST-AB isolates exhibited a relatively higher proportion of fluoroquinolone resistance. We demonstrated that, in terms of genotypes and phenotypes of antimicrobial resistance, non-epidemic ST-AB isolates shared more similarity with non- spp. isolates than with epidemic ST-AB isolates, regardless of bacterial species. In addition, this study revealed that, even in Japan, where IMP-type metallo-β-lactamase producers are endemic, epidemic ST-AB harbouring have not yet emerged.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.069138-0
2014-06-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/6/870.html?itemId=/content/journal/jmm/10.1099/jmm.0.069138-0&mimeType=html&fmt=ahah

References

  1. Bartual S. G., Seifert H., Hippler C., Luzon M. A. D., Wisplinghoff H., Rodríguez-Valera F.. ( 2005;). Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. . J Clin Microbiol 43:, 4382–4390. [CrossRef][PubMed]
    [Google Scholar]
  2. Cantón R., Akóva M., Carmeli Y., Giske C. G., Glupczynski Y., Gniadkowski M., Livermore D. M., Miriagou V., Naas T.. & other authors ( 2012;). Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. . Clin Microbiol Infect 18:, 413–431. [CrossRef][PubMed]
    [Google Scholar]
  3. Chu Y. W., Afzal-Shah M., Houang E. T., Palepou M. I., Lyon D. J., Woodford N., Livermore D. M.. ( 2001;). IMP-4, a novel metallo-β-lactamase from nosocomial Acinetobacter spp. collected in Hong Kong between 1994 and 1998. . Antimicrob Agents Chemother 45:, 710–714. [CrossRef][PubMed]
    [Google Scholar]
  4. CLSI ( 2012;). Performance Standards for Antimicrobial Susceptibility Testing; 22nd informational supplement M100-S22. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  5. Cornaglia G., Riccio M. L., Mazzariol A., Lauretti L., Fontana R., Rossolini G. M.. ( 1999;). Appearance of IMP-1 metallo-β-lactamase in Europe. . Lancet 353:, 899–900. [CrossRef][PubMed]
    [Google Scholar]
  6. Da Silva G. J., Correia M., Vital C., Ribeiro G., Sousa J. C., Leitão R., Peixe L., Duarte A.. ( 2002;). Molecular characterization of blaIMP-5, a new integron-borne metallo-β-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal. . FEMS Microbiol Lett 215:, 33–39.[PubMed]
    [Google Scholar]
  7. Da Silva G. J., Mendonça N., Batista G., Duarte A.. ( 2010;). Sequence types of Portuguese carbapenem-resistant Acinetobacter baumannii isolates collected over 10 years. . J Antimicrob Chemother 65:, 2254–2256. [CrossRef][PubMed]
    [Google Scholar]
  8. Di Popolo A., Giannouli M., Triassi M., Brisse S., Zarrilli R.. ( 2011;). Molecular epidemiological investigation of multidrug-resistant Acinetobacter baumannii strains in four Mediterranean countries with a multilocus sequence typing scheme. . Clin Microbiol Infect 17:, 197–201. [CrossRef][PubMed]
    [Google Scholar]
  9. Diancourt L., Passet V., Nemec A., Dijkshoorn L., Brisse S.. ( 2010;). The population structure of Acinetobacter baumannii: expanding multiresistant clones from an ancestral susceptible genetic pool. . PLoS ONE 5:, e10034. [CrossRef][PubMed]
    [Google Scholar]
  10. Dijkshoorn L., Aucken H., Gerner-Smidt P., Janssen P., Kaufmann M. E., Garaizar J., Ursing J., Pitt T. L.. ( 1996;). Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. . J Clin Microbiol 34:, 1519–1525.[PubMed]
    [Google Scholar]
  11. Dijkshoorn L., Nemec A., Seifert H.. ( 2007;). An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. . Nat Rev Microbiol 5:, 939–951. [CrossRef][PubMed]
    [Google Scholar]
  12. Dolzani L., Tonin E., Lagatolla C., Prandin L., Monti-Bragadin C.. ( 1995;). Identification of Acinetobacter isolates in the A. calcoaceticusA. baumannii complex by restriction analysis of the 16S–23S rRNA intergenic-spacer sequences. . J Clin Microbiol 33:, 1108–1113.[PubMed]
    [Google Scholar]
  13. Higgins P. G., Dammhayn C., Hackel M., Seifert H.. ( 2010;). Global spread of carbapenem-resistant Acinetobacter baumannii. . J Antimicrob Chemother 65:, 233–238. [CrossRef][PubMed]
    [Google Scholar]
  14. Kouyama Y., Harada S., Ishii Y., Saga T., Yoshizumi A., Tateda K., Yamaguchi K.. ( 2012;). Molecular characterization of carbapenem-non-susceptible Acinetobacter spp. in Japan: predominance of multidrug-resistant Acinetobacter baumannii clonal complex 92 and IMP-type metallo-β-lactamase-producing non-baumannii Acinetobacter species. . J Infect Chemother 18:, 522–528. [CrossRef][PubMed]
    [Google Scholar]
  15. La Scola B., Gundi V. A. K. B., Khamis A., Raoult D.. ( 2006;). Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. . J Clin Microbiol 44:, 827–832. [CrossRef][PubMed]
    [Google Scholar]
  16. Lee J. H., Choi C. H., Kang H. Y., Lee J. Y., Kim J., Lee Y. C., Seol S. Y., Cho D. T., Kim K. W.. & other authors ( 2007;). Differences in phenotypic and genotypic traits against antimicrobial agents between Acinetobacter baumannii and Acinetobacter genomic species 13TU. . J Antimicrob Chemother 59:, 633–639. [CrossRef][PubMed]
    [Google Scholar]
  17. Lee M. F., Peng C. F., Hsu H. J., Chen Y. H.. ( 2008;). Molecular characterisation of the metallo-β-lactamase genes in imipenem-resistant Gram-negative bacteria from a university hospital in southern Taiwan. . Int J Antimicrob Agents 32:, 475–480. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee K., Yong D., Jeong S. H., Chong Y.. ( 2011;). Multidrug-resistant Acinetobacter spp.: increasingly problematic nosocomial pathogens. . Yonsei Med J 52:, 879–891. [CrossRef][PubMed]
    [Google Scholar]
  19. Matsui M., Suzuki S., Suzuki M., Arakawa Y., Shibayama K.. ( 2013;). Rapid discrimination of Acinetobacter baumannii international clone II lineage by pyrosequencing SNP analyses of blaOXA-51-like genes. . J Microbiol Methods 94:, 121–124. [CrossRef][PubMed]
    [Google Scholar]
  20. Mugnier P. D., Poirel L., Naas T., Nordmann P.. ( 2010;). Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. . Emerg Infect Dis 16:, 35–40. [CrossRef][PubMed]
    [Google Scholar]
  21. Nishio H., Komatsu M., Shibata N., Shimakawa K., Sueyoshi N., Ura T., Satoh K., Toyokawa M., Nakamura T.. & other authors ( 2004;). Metallo-β-lactamase-producing Gram-negative bacilli: laboratory-based surveillance in cooperation with 13 clinical laboratories in the Kinki region of Japan. . J Clin Microbiol 42:, 5256–5263. [CrossRef][PubMed]
    [Google Scholar]
  22. Poirel L., Nordmann P.. ( 2006;). Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-58 in Acinetobacter baumannii. . Antimicrob Agents Chemother 50:, 1442–1448. [CrossRef][PubMed]
    [Google Scholar]
  23. Shibata N., Doi Y., Yamane K., Yagi T., Kurokawa H., Shibayama K., Kato H., Kai K., Arakawa Y.. ( 2003;). PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by Gram-negative bacteria isolated in Japan, with focus on the class 3 integron. . J Clin Microbiol 41:, 5407–5413. [CrossRef][PubMed]
    [Google Scholar]
  24. Sung J. Y., Kwon K. C., Park J. W., Kim Y. S., Kim J. M., Shin K. S., Kim J. W., Ko C. S., Shin S. Y.. & other authors ( 2008;). [Dissemination of IMP-1 and OXA type β-lactamase in carbapenem-resistant Acinetobacter baumannii.]. . Korean J Lab Med 28:, 16–23 (in Korean). [CrossRef][PubMed]
    [Google Scholar]
  25. Suzuki S., Matsui M., Suzuki M., Sugita A., Kosuge Y., Kodama N., Ichise Y., Shibayama K.. ( 2013;). Detection of tripoli metallo-β-lactamase 2 (TMB-2), a variant of blaTMB-1, in clinical isolates of Acinetobacter spp. in Japan. . J Antimicrob Chemother 68:, 1441–1442. [CrossRef][PubMed]
    [Google Scholar]
  26. Turton J. F., Ward M. E., Woodford N., Kaufmann M. E., Pike R., Livermore D. M., Pitt T. L.. ( 2006;). The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. . FEMS Microbiol Lett 258:, 72–77. [CrossRef][PubMed]
    [Google Scholar]
  27. Woodford N., Ellington M. J., Coelho J. M., Turton J. F., Ward M. E., Brown S., Amyes S. G. B., Livermore D. M.. ( 2006;). Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp.. Int J Antimicrob Agents 27:, 351–353. [CrossRef][PubMed]
    [Google Scholar]
  28. Zarrilli R., Pournaras S., Giannouli M., Tsakris A.. ( 2013;). Global evolution of multidrug-resistant Acinetobacter baumannii clonal lineages. . Int J Antimicrob Agents 41:, 11–19. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.069138-0
Loading
/content/journal/jmm/10.1099/jmm.0.069138-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error