1887

Abstract

The objective of this study was to characterize the effects of silver nanoparticles on . Their interactions with several conventional antibiotics and ability to induce a stress response were examined. Interactions between silver nanoparticles (AgNPs) and antibiotics against free-living cells and biofilm of were studied using the chequerboard method and time-kill assays. The ability of AgNPs to induce a stress response was determined by evaluation of cellular levels of the DnaK and HtpG chaperones using SDS-PAGE and Western blot analysis. Synergistic activity against free-living between AgNPs and ampicillin, streptomycin, rifampicin and tetracycline, but not oxacillin, ciprofloxacin, meropenem or ceftazidime, was demonstrated by the chequerboard method. No such interactions were observed against biofilm. The results of time-kill assays confirmed synergy only for the AgNPs–streptomycin combination. AgNPs induced the expression of chaperone DnaK. No induction of the HtpG chaperone was detected. In conclusion, AgNPs not only display potent bactericidal activity against , but also act synergistically with several conventional antibiotics to enhance their effect against free-living bacteria as determined by the chequerboard method. The time-kill assay proved synergy between AgNPs and streptomycin only. The ability of AgNPs to induce the major chaperone protein DnaK may influence bacterial resistance to antimicrobials.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.068833-0
2014-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/6/849.html?itemId=/content/journal/jmm/10.1099/jmm.0.068833-0&mimeType=html&fmt=ahah

References

  1. Bonapace C. R., White R. L., Friedrich L. V., Bosso J. A.. ( 2000;). Evaluation of antibiotic synergy against Acinetobacter baumannii: a comparison with Etest, time-kill, and checkerboard methods. . Diagn Microbiol Infect Dis 38:, 43–50. [CrossRef][PubMed]
    [Google Scholar]
  2. Cardoso K., Gandra R. F., Wisniewski E. S., Osaku C. A., Kadowaki M. K., Felipach-Neto V., Haus L. F. A.-A., Simão R. C. G.. ( 2010;). DnaK and GroEL are induced in response to antibiotic and heat shock in Acinetobacter baumannii. . J Med Microbiol 59:, 1061–1068. [CrossRef][PubMed]
    [Google Scholar]
  3. Choi O., Yu C. P., Esteban Fernández G., Hu Z.. ( 2010;). Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. . Water Res 44:, 6095–6103. [CrossRef][PubMed]
    [Google Scholar]
  4. Chwalibog A., Sawosz E., Hotowy A., Szeliga J., Mitura S., Mitura K., Grodzik M., Orlowski P., Sokolowska A.. ( 2010;). Visualization of interaction between inorganic nanoparticles and bacteria or fungi. . Int J Nanomedicine 5:, 1085–1094. [CrossRef][PubMed]
    [Google Scholar]
  5. Edwards-Jones V.. ( 2009;). The benefits of silver in hygiene, personal care and healthcare. . Lett Appl Microbiol 49:, 147–152. [CrossRef][PubMed]
    [Google Scholar]
  6. Eliopoulos G. M., Moellering R. C. Jr. ( 1996;). Antimicrobial combinations. . In Antibiotics in Laboratory Medicine, , 4th edn., pp. 330–396. Edited by Lorian V... Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  7. Fayaz A. M., Balaji K., Girilal M., Yadav R., Kalaichelvan P. T., Venketesan R.. ( 2010;). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. . Nanomedicine (Lond Print) 6:, 103–109.[PubMed]
    [Google Scholar]
  8. Fischbach M. A.. ( 2011;). Combination therapies for combating antimicrobial resistance. . Curr Opin Microbiol 14:, 519–523. [CrossRef][PubMed]
    [Google Scholar]
  9. Ghosh S., Patil S., Ahire M., Kitture R., Kale S., Pardesi K., Cameotra S. S., Bellare J., Dhavale D. D.. & other authors ( 2012;). Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. . Int J Nanomedicine 7:, 483–496.[PubMed]
    [Google Scholar]
  10. Goltermann L., Good L., Bentin T.. ( 2013;). Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli. . J Biol Chem 288:, 10483–10489. [CrossRef][PubMed]
    [Google Scholar]
  11. Grudniak A. M., Kurek A., Szarlak J., Wolska K. I.. ( 2011;). Oleanolic and ursolic acids influence affect the expression of the cysteine regulon and the stress response in Escherichia coli. . Curr Microbiol 62:, 1331–1336. [CrossRef][PubMed]
    [Google Scholar]
  12. Hwang I. S., Hwang J. H., Choi H., Kim K. J., Lee D. G.. ( 2012;). Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. . J Med Microbiol 61:, 1719–1726. [CrossRef][PubMed]
    [Google Scholar]
  13. Kalishwaralal K., BarathManiKanth S., Pandian S. R. K., Deepak V., Gurunathan S.. ( 2010;). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. . Colloids Surf B Biointerfaces 79:, 340–344. [CrossRef][PubMed]
    [Google Scholar]
  14. Konwarh R., Gogoi B., Philip R., Laskar M. A., Karak N.. ( 2011;). Biomimetic preparation of polymer-supported free radical scavenging, cytocompatible and antimicrobial “green” silver nanoparticles using aqueous extract of Citrus sinensis peel. . Colloids Surf B Biointerfaces 84:, 338–345. [CrossRef][PubMed]
    [Google Scholar]
  15. Kurek A., Grudniak A. M., Kraczkiewicz-Dowjat A., Wolska K. I.. ( 2011;). New antibacterial therapeutics and strategies. . Pol J Microbiol 60:, 3–12.[PubMed]
    [Google Scholar]
  16. Lok C. N., Ho C. M., Chen R., He Q. Y., Yu W. Y., Sun H., Tam P. K., Chiu J. F., Che C. M.. ( 2006;). Proteomic analysis of the mode of antibacterial action of silver nanoparticles. . J Proteome Res 5:, 916–924. [CrossRef][PubMed]
    [Google Scholar]
  17. Mason C. A., Dünner J., Indra P., Colangelo T.. ( 1999;). Heat-induced expression and chemically induced expression of the Escherichia coli stress protein HtpG are affected by the growth environment. . Appl Environ Microbiol 65:, 3433–3440.[PubMed]
    [Google Scholar]
  18. Matsumura S. O., Louie L., Louie M., Simor A. E.. ( 1999;). Synergy testing of vancomycin-resistant Enterococcus faecium against quinupristin-dalfopristin in combination with other antimicrobial agents. . Antimicrob Agents Chemother 43:, 2776–2779.[PubMed]
    [Google Scholar]
  19. Monteiro D. R., Gorup L. F., Takamiya A. S., Ruvollo-Filho A. C., de Camargo E. R., Barbosa D. B.. ( 2009;). The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. . Int J Antimicrob Agents 34:, 103–110. [CrossRef][PubMed]
    [Google Scholar]
  20. National Institutes of Health ( 2013;). ImageJ software, Image processing and analysing in Java. . [accessed on 16 September 2013]. http://rsb.info.nih.gov/ij.
  21. Odds F. C.. ( 2003;). Synergy, antagonism, and what the chequerboard puts between them. . J Antimicrob Chemother 52:, 1. [CrossRef][PubMed]
    [Google Scholar]
  22. Poole K.. ( 2012;). Bacterial stress responses as determinants of antimicrobial resistance. . J Antimicrob Chemother 67:, 2069–2089. [CrossRef][PubMed]
    [Google Scholar]
  23. Porras-Gómez M., Vega-Baudrit J., Núňez-Corrales S.. ( 2012;). Overview of multidrug-resistant Pseudomonas aeruginosa and novel therapeutic approaches. . J Biomater Nanobiotech 3:, 519–527. [CrossRef]
    [Google Scholar]
  24. Rai M., Yadav A., Gade A.. ( 2009;). Silver nanoparticles as a new generation of antimicrobials. . Biotechnol Adv 27:, 76–83. [CrossRef][PubMed]
    [Google Scholar]
  25. Saibil H. R.. ( 2008;). Chaperone machines in action. . Curr Opin Struct Biol 18:, 35–42. [CrossRef][PubMed]
    [Google Scholar]
  26. Singh M., Singh S., Prasada S., Gambhir I. S.. ( 2008;). Nanotechnology in medicine and antibacterial effect of silver nanoparticles. . Dig J Nanomater Bios 3:, 115–122.
    [Google Scholar]
  27. Smith K., Perez A., Ramage G., Lappin D., Gemmell C. G., Lang S.. ( 2008;). Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. . J Med Microbiol 57:, 1018–1023. [CrossRef][PubMed]
    [Google Scholar]
  28. van Hoek A. H., Mevius D., Guerra B., Mullany P., Roberts A. P., Aarts H. J.. ( 2011;). Acquired antibiotic resistance genes: an overview. . Front Microbiol 2:, 203. [CrossRef][PubMed]
    [Google Scholar]
  29. White R. L., Burgess D. S., Manduru M., Bosso J. A.. ( 1996;). Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test. . Antimicrob Agents Chemother 40:, 1914–1918.[PubMed]
    [Google Scholar]
  30. Yamaguchi Y., Tomoyasu T., Takaya A., Morioka M., Yamamoto T.. ( 2003;). Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones. . BMC Microbiol 3:, 16. [CrossRef][PubMed]
    [Google Scholar]
  31. Yura T., Nagahigashi K., Kanemori M.. ( 1996;). Transcriptional regulation of stress-inducible genes in procaryotes. . In Stress-inducible Cellular Responses, pp. 165–181. Edited by Feige U., Morimoto R. I., Yahara I., Polla B. S... Boston, MA:: Birkhäuser;. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.068833-0
Loading
/content/journal/jmm/10.1099/jmm.0.068833-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error