1887

Abstract

infection (CDI) is caused by toxin-producing strains. It accounts for 20–30 % of antibiotic-associated diarrhoea and particularly accounts for 90 % of pseudomembranous colitis. The epidemiological study of is thus important. In this study, we report the molecular epidemiology and ward distribution of in a tertiary hospital of China. A total of 161 toxigenic strains were isolated from 1845 patients originating from different wards and the strains were characterized based on toxin profile and multilocus sequence typing. Variable isolation rates were observed in different wards and the occurrence was higher in intensive care unit and geriatric wards. Toxin gene profiling revealed that, out of the 161 isolates, 134 (83.2)% were positive for both toxin A () and toxin B () (A+B+) followed by toxin A-negative and B-positive (A−B+) (16.8 %) isolates. However, only three of the toxigenic strains (1.9 %) were positive for both the and genes. Based on the molecular epidemiology study, a total of 30 different sequence types (STs), including one new ST (ST-220), were distinguishable. ST-54 was the most prevalent (23.0 %), followed by ST-35 (19.3 %) and ST-37 (10.0 %). None of the isolates belonged to ST-1 (ribotype 027) or ST-11 (ribotype 078). Taken together, the toxin profile and the molecular epidemiological data showed that all the ST-37 clades were of toxin type A−B+, which accounted for 59.3 % of all type A−B+ isolates. Meanwhile the clade 1 genotype, ST-54, was widely distributed among the geriatric, infection and haematology wards. There was no outbreak of infection during our study; however the possibility of prolonged outbreaks cannot be completely ignored.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.068668-0
2014-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/4/562.html?itemId=/content/journal/jmm/10.1099/jmm.0.068668-0&mimeType=html&fmt=ahah

References

  1. Bartlett J. G.. ( 2002;). Clinical practice. Antibiotic-associated diarrhea. . N Engl J Med 346:, 334–339. [CrossRef][PubMed]
    [Google Scholar]
  2. Bartlett J. G.. ( 2008;). Historical perspectives on studies of Clostridium difficile and C. difficile infection. . Clin Infect Dis 46: (Suppl 1), S4–S11. [CrossRef][PubMed]
    [Google Scholar]
  3. Bauer M. P., Notermans D. W., van Benthem B. H., Brazier J. S., Wilcox M. H., Rupnik M., Monnet D. L., van Dissel J. T., Kuijper E. J.. ( 2011;). Clostridium difficile infection in Europe: a hospital-based survey. . Lancet 377:, 63–73. [CrossRef][PubMed]
    [Google Scholar]
  4. Chung C. H., Wu C. J., Lee H. C., Yan J. J., Chang C. M., Lee N. Y., Chen P. L., Lee C. C., Hung Y. P., Ko W. C.. ( 2010;). Clostridium difficile infection at a medical center in southern Taiwan: incidence, clinical features and prognosis. . J Microbiol Immunol Infect 43:, 119–125. [CrossRef][PubMed]
    [Google Scholar]
  5. Dong D., Zhang L., Chen X., Jiang C., Yu B., Wang X., Peng Y.. ( 2013;). Antimicrobial susceptibility and resistance mechanisms of clinical Clostridium difficile from a Chinese tertiary hospital. . Int J Antimicrob Agents 41:, 80–84. [CrossRef][PubMed]
    [Google Scholar]
  6. Gorschlüter M., Glasmacher A., Hahn C., Schakowski F., Ziske C., Molitor E., Marklein G., Sauerbruch T., Schmidt-Wolf I. G.. ( 2001;). Clostridium difficile infection in patients with neutropenia. . Clin Infect Dis 33:, 786–791. [CrossRef][PubMed]
    [Google Scholar]
  7. Griffiths D., Fawley W., Kachrimanidou M., Bowden R., Crook D. W., Fung R., Golubchik T., Harding R. M., Jeffery K. J.. & other authors ( 2010;). Multilocus sequence typing of Clostridium difficile.. J Clin Microbiol 48:, 770–778. [CrossRef][PubMed]
    [Google Scholar]
  8. He M., Miyajima F., Roberts P., Ellison L., Pickard D. J., Martin M. J., Connor T. R., Harris S. R., Fairley D.. & other authors ( 2013;). Emergence and global spread of epidemic healthcare-associated Clostridium difficile.. Nat Genet 45:, 109–113. [CrossRef][PubMed]
    [Google Scholar]
  9. Huang H., Wu S., Wang M., Zhang Y., Fang H., Palmgren A. C., Weintraub A., Nord C. E.. ( 2009;). Clostridium difficile infections in a Shanghai hospital: antimicrobial resistance, toxin profiles and ribotypes. . Int J Antimicrob Agents 33:, 339–342. [CrossRef][PubMed]
    [Google Scholar]
  10. Kato H., Kato N., Watanabe K., Iwai N., Nakamura H., Yamamoto T., Suzuki K., Kim S. M., Chong Y., Wasito E. B.. ( 1998;). Identification of toxin A-negative, toxin B-positive Clostridium difficile by PCR. . J Clin Microbiol 36:, 2178–2182. [CrossRef][PubMed]
    [Google Scholar]
  11. Killgore G., Thompson A., Johnson S., Brazier J., Kuijper E., Pepin J., Frost E. H., Savelkoul P., Nicholson B.. & other authors ( 2008;). Comparison of seven techniques for typing international epidemic strains of Clostridium difficile: restriction endonuclease analysis, pulsed-field gel electrophoresis, PCR-ribotyping, multilocus sequence typing, multilocus variable-number tandem-repeat analysis, amplified fragment length polymorphism, and surface layer protein A gene sequence typing. . J Clin Microbiol 46:, 431–437. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim H., Jeong S. H., Roh K. H., Hong S. G., Kim J. W., Shin M. G., Kim M. N., Shin H. B., Uh Y.. & other authors ( 2010;). Investigation of toxin gene diversity, molecular epidemiology, and antimicrobial resistance of Clostridium difficile isolated from 12 hospitals in South Korea. . Korean J Lab Med 30:, 491–497. [CrossRef][PubMed]
    [Google Scholar]
  13. Kim J., Pai H., Seo M. R., Kang J. O.. ( 2012;). Clinical and microbiologic characteristics of tcdA-negative variant Clostridium difficile infections. . BMC Infect Dis 12:, 109. [CrossRef][PubMed]
    [Google Scholar]
  14. Lemee L., Dhalluin A., Pestel-Caron M., Lemeland J. F., Pons J. L.. ( 2004;). Multilocus sequence typing analysis of human and animal Clostridium difficile isolates of various toxigenic types. . J Clin Microbiol 42:, 2609–2617. [CrossRef][PubMed]
    [Google Scholar]
  15. Lemée L., Bourgeois I., Ruffin E., Collignon A., Lemeland J. F., Pons J. L.. ( 2005;). Multilocus sequence analysis and comparative evolution of virulence-associated genes and housekeeping genes of Clostridium difficile.. Microbiology 151:, 3171–3180. [CrossRef][PubMed]
    [Google Scholar]
  16. Loo V. G., Bourgault A. M., Poirier L., Lamothe F., Michaud S., Turgeon N., Toye B., Beaudoin A., Frost E. H.. & other authors ( 2011;). Host and pathogen factors for Clostridium difficile infection and colonization. . N Engl J Med 365:, 1693–1703. [CrossRef][PubMed]
    [Google Scholar]
  17. Pothoulakis C.. ( 1996;). Pathogenesis of Clostridium difficile-associated diarrhoea. . Eur J Gastroenterol Hepatol 8:, 1041–1047. [CrossRef][PubMed]
    [Google Scholar]
  18. Rupnik M.. ( 2008;). Heterogeneity of large clostridial toxins: importance of Clostridium difficile toxinotypes. . FEMS Microbiol Rev 32:, 541–555. [CrossRef][PubMed]
    [Google Scholar]
  19. Rupnik M., Kato N., Grabnar M., Kato H.. ( 2003;). New types of toxin A-negative, toxin B-positive strains among Clostridium difficile isolates from Asia. . J Clin Microbiol 41:, 1118–1125. [CrossRef][PubMed]
    [Google Scholar]
  20. Rupnik M., Wilcox M. H., Gerding D. N.. ( 2009;). Clostridium difficile infection: new developments in epidemiology and pathogenesis. . Nat Rev Microbiol 7:, 526–536. [CrossRef][PubMed]
    [Google Scholar]
  21. Shin B. M., Kuak E. Y., Yoo H. M., Kim E. C., Lee K., Kang J. O., Whang D. H., Shin J. H.. ( 2008;). Multicentre study of the prevalence of toxigenic Clostridium difficile in Korea: results of a retrospective study 2000–2005. . J Med Microbiol 57:, 697–701. [CrossRef][PubMed]
    [Google Scholar]
  22. Søes L. M., Brock I., Persson S., Simonsen J., Pribil Olsen K. E., Kemp M.. ( 2012;). Clinical features of Clostridium difficile infection and molecular characterization of the isolated strains in a cohort of Danish hospitalized patients. . Eur J Clin Microbiol Infect Dis 31:, 185–192. [CrossRef][PubMed]
    [Google Scholar]
  23. Stubbs S., Rupnik M., Gibert M., Brazier J., Duerden B., Popoff M.. ( 2000;). Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile.. FEMS Microbiol Lett 186:, 307–312. [CrossRef][PubMed]
    [Google Scholar]
  24. Walker A. S., Eyre D. W., Wyllie D. H., Dingle K. E., Griffiths D., Shine B., Oakley S., O’Connor L., Finney J.. & other authors ( 2013;). Relationship between bacterial strain type, host biomarkers, and mortality in Clostridium difficile infection. . Clin Infect Dis 56:, 1589–1600. [CrossRef][PubMed]
    [Google Scholar]
  25. Yan Q., Zhang J., Chen C., Zhou H., Du P., Cui Z., Cen R., Liu L., Li W.. & other authors ( 2013;). Multilocus sequence typing (MLST) analysis of 104 Clostridium difficile strains isolated from China. . Epidemiol Infect 141:, 195–199. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.068668-0
Loading
/content/journal/jmm/10.1099/jmm.0.068668-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error