1887

Abstract

Carbapenems are first-line agents for the treatment of serious nosocomial infections caused by multidrug-resistant . However, resistance to carbapenems has increased dramatically among in our hospital. In this study, we report clonal dissemination caused by carbapenem-resistant (CREA). In 2011, CREA was identified from 12 patients admitted to the neurosurgical ward. All 12 clinical isolates were non-susceptible to cefotaxime, ceftazidime, cefoxitin, ertapenem, imipenem or meropenem. All isolates carried the gene encoding carbapenemase-2 (KPC-2), except for the isolate E. However, a remarkably lower expression level of the porin OmpF was detected in the non-KPC-2-producing isolate E on SDS-PAGE compared with the carbapenem-susceptible isolate. Epidemiological and molecular investigations showed that a single s strain (PFGE type A), including seven KPC-2-producing clinical isolates, was primarily responsible for the first isolation and subsequent dissemination. In a case-control study, we identified risk factors for infection/colonization with CREA. Mechanical ventilation, the changing of sickbeds and previous use of broad-spectrum antibiotics were identified as potential risk factors. Our findings suggest that further studies should focus on judicious use of available antibiotics, implementation of active antibiotic resistance surveillance and strict implementation of infection-control measures to avoid the rapid spread or clonal dissemination caused by carbapenem-resistant in healthcare facilities.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.064865-0
2014-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/2/222.html?itemId=/content/journal/jmm/10.1099/jmm.0.064865-0&mimeType=html&fmt=ahah

References

  1. Borer A., Saidel-Odes L., Riesenberg K., Eskira S., Peled N., Nativ R., Schlaeffer F., Sherf M.. ( 2009;). Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. . Infect Control Hosp Epidemiol 30:, 972–976. [CrossRef][PubMed]
    [Google Scholar]
  2. Cantón R., Akóva M., Carmeli Y., Giske C. G., Glupczynski Y., Gniadkowski M., Livermore D. M., Miriagou V., Naas T.. & other authors ( 2012;). Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. . Clin Microbiol Infect 18:, 413–431. [CrossRef][PubMed]
    [Google Scholar]
  3. Chen Y., Zhou Z., Jiang Y., Yu Y.. ( 2011a;). Emergence of NDM-1-producing Acinetobacter baumannii in China. . J Antimicrob Chemother 66:, 1255–1259. [CrossRef][PubMed]
    [Google Scholar]
  4. Chen S., Hu F., Liu Y., Zhu D., Wang H., Zhang Y.. ( 2011b;). Detection and spread of carbapenem-resistant Citrobacter freundii in a teaching hospital in China. . Am J Infect Control 39:, e55–e60. [CrossRef][PubMed]
    [Google Scholar]
  5. Chen S., Hu F., Xu X., Liu Y., Wu W., Zhu D., Wang H.. ( 2011c;). High prevalence of KPC-2-type carbapenemase coupled with CTX-M-type extended-spectrum β-lactamases in carbapenem-resistant Klebsiella pneumoniae in a teaching hospital in China. . Antimicrob Agents Chemother 55:, 2493–2494. [CrossRef][PubMed]
    [Google Scholar]
  6. CLSI ( 2010;). Performance Standards for Antimicrobial Susceptibility Testing; 20th Informational Supplement M100-S20. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  7. Falagas M. E., Karageorgopoulos D. E.. ( 2008;). Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. . Clin Infect Dis 46:, 1121–1122, author reply 1122. [CrossRef][PubMed]
    [Google Scholar]
  8. Falagas M. E., Karageorgopoulos D. E., Nordmann P.. ( 2011;). Therapeutic options for infections with Enterobacteriaceae producing carbapenem-hydrolyzing enzymes. . Future Microbiol 6:, 653–666. [CrossRef][PubMed]
    [Google Scholar]
  9. Fernández-Cuenca F., Rodríguez-Martínez J. M., Martínez-Martínez L., Pascual A.. ( 2006;). In vivo selection of Enterobacter aerogenes with reduced susceptibility to cefepime and carbapenems associated with decreased expression of a 40 kDa outer membrane protein and hyperproduction of AmpC β-lactamase. . Int J Antimicrob Agents 27:, 549–552. [CrossRef][PubMed]
    [Google Scholar]
  10. Garner J. S., Jarvis W. R., Emori T. G., Horan T. C., Hughes J. M.. ( 1988;). CDC definitions for nosocomial infections, 1988. . Am J Infect Control 16:, 128–140. [CrossRef][PubMed]
    [Google Scholar]
  11. Gayet S., Chollet R., Molle G., Pagès J. M., Chevalier J.. ( 2003;). Modification of outer membrane protein profile and evidence suggesting an active drug pump in Enterobacter aerogenes clinical strains. . Antimicrob Agents Chemother 47:, 1555–1559. [CrossRef][PubMed]
    [Google Scholar]
  12. Gupta N., Limbago B. M., Patel J. B., Kallen A. J.. ( 2011;). Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. . Clin Infect Dis 53:, 60–67. [CrossRef][PubMed]
    [Google Scholar]
  13. Hirsch E. B., Tam V. H.. ( 2010;). Detection and treatment options for Klebsiella pneumoniae carbapenemases (KPCs): an emerging cause of multidrug-resistant infection. . J Antimicrob Chemother 65:, 1119–1125. [CrossRef][PubMed]
    [Google Scholar]
  14. Hu F., Chen S., Xu X., Guo Y., Liu Y., Zhu D., Zhang Y.. ( 2012;). Emergence of carbapenem-resistant clinical Enterobacteriaceae isolates from a teaching hospital in Shanghai, China. . J Med Microbiol 61:, 132–136. [CrossRef][PubMed]
    [Google Scholar]
  15. Lledo W., Hernandez M., Lopez E., Molinari O. L., Soto R. Q., Hernandez E., Santiago N., Flores M., Vazquez G. J..Centers for Disease Control and Prevention (CDC) ( 2009;). Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. . MMWR Morb Mortal Wkly Rep 58:, 256–260.[PubMed]
    [Google Scholar]
  16. Murray P. R., Baron E. J., Jorgensen J. H., Landry M. L., Pfaller M. A.. ( 2007;). Detection and characterization of antimicrobial resistance genes in pathogenic bacteria. . In Manual of Clinical Microbiology, , 9th edn., pp. 1250–1256. Edited by Rasheed J. K., Cockerill F., Tenover F. C... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Nordmann P., Dortet L., Poirel L.. ( 2012;). Carbapenem resistance in Enterobacteriaceae: here is the storm!. Trends Mol Med 18:, 263–272. [CrossRef][PubMed]
    [Google Scholar]
  18. Peleg A. Y., Hooper D. C.. ( 2010;). Hospital-acquired infections due to Gram-negative bacteria. . N Engl J Med 362:, 1804–1813. [CrossRef][PubMed]
    [Google Scholar]
  19. Pérez-Pérez F. J., Hanson N. D.. ( 2002;). Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. . J Clin Microbiol 40:, 2153–2162. [CrossRef][PubMed]
    [Google Scholar]
  20. Petrosillo N., Giannella M., Lewis R., Viale P.. ( 2013;). Treatment of carbapenem-resistant Klebsiella pneumoniae: the state of the art. . Expert Rev Anti Infect Ther 11:, 159–177. [CrossRef][PubMed]
    [Google Scholar]
  21. Pfeifer Y., Cullik A., Witte W.. ( 2010;). Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. . Int J Med Microbiol 300:, 371–379. [CrossRef][PubMed]
    [Google Scholar]
  22. Schlesinger J., Navon-Venezia S., Chmelnitsky I., Hammer-Münz O., Leavitt A., Gold H. S., Schwaber M. J., Carmeli Y.. ( 2005;). Extended-spectrum β-lactamases among Enterobacter isolates obtained in Tel Aviv, Israel. . Antimicrob Agents Chemother 49:, 1150–1156. [CrossRef][PubMed]
    [Google Scholar]
  23. Szabó D., Silveira F., Hujer A. M., Bonomo R. A., Hujer K. M., Marsh J. W., Bethel C. R., Doi Y., Deeley K., Paterson D. L.. ( 2006;). Outer membrane protein changes and efflux pump expression together may confer resistance to ertapenem in Enterobacter cloacae. . Antimicrob Agents Chemother 50:, 2833–2835. [CrossRef][PubMed]
    [Google Scholar]
  24. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B.. ( 1995;). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. . J Clin Microbiol 33:, 2233–2239.[PubMed]
    [Google Scholar]
  25. Thiolas A., Bornet C., Davin-Régli A., Pagès J. M., Bollet C.. ( 2004;). Resistance to imipenem, cefepime, and cefpirome associated with mutation in Omp36 osmoporin of Enterobacter aerogenes. . Biochem Biophys Res Commun 317:, 851–856. [CrossRef][PubMed]
    [Google Scholar]
  26. Vardakas K. Z., Tansarli G. S., Rafailidis P. I., Falagas M. E.. ( 2012;). Carbapenems versus alternative antibiotics for the treatment of bacteraemia due to Enterobacteriaceae producing extended-spectrum β-lactamases: a systematic review and meta-analysis. . J Antimicrob Chemother 67:, 2793–2803. [CrossRef][PubMed]
    [Google Scholar]
  27. Yang K., Guglielmo B. J.. ( 2007;). Diagnosis and treatment of extended-spectrum and AmpC β-lactamase-producing organisms. . Ann Pharmacother 41:, 1427–1435. [CrossRef][PubMed]
    [Google Scholar]
  28. Zhang R., Wang X. D., Cai J. C., Zhou H. W., Lv H. X., Hu Q. F., Chen G. X.. ( 2011;). Outbreak of Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae with high qnr prevalence in a Chinese hospital. . J Med Microbiol 60:, 977–982. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.064865-0
Loading
/content/journal/jmm/10.1099/jmm.0.064865-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error