1887

Abstract

The objective of this study was to develop and validate an expanded multiplex PCR assay for the simultaneous detection of eight plasmid-mediated quinolone-resistance determinants in . Primers were designed to amplify conserved fragments of , , and genes and were optimized in uniplex and multiplex PCR assays with control template DNA. The assay was used to determine the prevalence of plasmid-mediated quinolone resistance (PMQR) genes in 174 ciprofloxacin-resistant and 43 ciprofloxacin-susceptible extraintestinal pathogenic isolates. Each resistance gene could be detected alone and in combination. PMQR determinants were detected in 65 ciprofloxacin-resistant isolates (37 %) and one ciprofloxacin-susceptible isolate (2 %). Prevalences of the identified determinants were: , 34.5 %; , 1.1 %; , 1.1 %; and , 0.6 %. In conclusion, we developed an eight-target multiplex PCR for the accurate detection of PMQR genes and confirmed that PMQR prevalence remains low among human clinical isolates in the UK.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.064428-0
2013-12-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/12/1823.html?itemId=/content/journal/jmm/10.1099/jmm.0.064428-0&mimeType=html&fmt=ahah

References

  1. Amin A. K., Wareham D. W.. ( 2009;). Plasmid-mediated quinolone resistance genes in Enterobacteriaceae isolates associated with community and nosocomial urinary tract infection in East London, UK. . Int J Antimicrob Agents 34:, 490–491. [CrossRef][PubMed]
    [Google Scholar]
  2. Andres P., Lucero C., Soler-Bistué A., Guerriero L., Albornoz E., Tran T., Zorreguieta A., Galas M., Corso A.. & other authors ( 2013;). Differential distribution of plasmid-mediated quinolone resistance genes in clinical enterobacteria with unusual phenotypes of quinolone susceptibility from Argentina. . Antimicrob Agents Chemother 57:, 2467–2475. [CrossRef][PubMed]
    [Google Scholar]
  3. Andrews J. M.. ( 2001;). Determination of minimum inhibitory concentrations. . J Antimicrob Chemother 48: (Suppl 1), 5–16. [CrossRef][PubMed]
    [Google Scholar]
  4. Cattoir V., Poirel L., Rotimi V., Soussy C. J., Nordmann P.. ( 2007;). Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. . J Antimicrob Chemother 60:, 394–397. [CrossRef][PubMed]
    [Google Scholar]
  5. Cavaco L. M., Hasman H., Xia S., Aarestrup F. M.. ( 2009;). qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. . Antimicrob Agents Chemother 53:, 603–608. [CrossRef][PubMed]
    [Google Scholar]
  6. Corkill J. E., Anson J. J., Hart C. A.. ( 2005;). High prevalence of the plasmid-mediated quinolone resistance determinant qnrA in multidrug-resistant Enterobacteriaceae from blood cultures in Liverpool, UK. . J Antimicrob Chemother 56:, 1115–1117. [CrossRef][PubMed]
    [Google Scholar]
  7. Dallenne C., Da Costa A., Decré D., Favier C., Arlet G.. ( 2010;). Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. . J Antimicrob Chemother 65:, 490–495. [CrossRef][PubMed]
    [Google Scholar]
  8. Deepak R. N., Koh T. H., Chan K. S.. ( 2009;). Plasmid-mediated quinolone resistance determinants in urinary isolates of Escherichia coli and Klebsiella pneumoniae in a large Singapore hospital. . Ann Acad Med Singapore 38:, 1070–1073.[PubMed]
    [Google Scholar]
  9. Doumith M., Day M. J., Hope R., Wain J., Woodford N.. ( 2012;). Improved multiplex PCR strategy for rapid assignment of the four major Escherichia coli phylogenetic groups. . J Clin Microbiol 50:, 3108–3110. [CrossRef][PubMed]
    [Google Scholar]
  10. Gibreel T., Dodgson A., Cheesbrough J., Fox A., Bolton F., Upton M.. ( 2011;). Population structure, virulence potential and antibiotic susceptibility of uropathogenic Escherichia coli from Northwest England. . J Antimicrob Chemother 67:, 346–356. [CrossRef][PubMed]
    [Google Scholar]
  11. Hopkins K. L., Wootton L., Day M. R., Threlfall E. J.. ( 2007;). Plasmid-mediated quinolone resistance determinant qnrS1 found in Salmonella enterica strains isolated in the UK. . J Antimicrob Chemother 59:, 1071–1075. [CrossRef][PubMed]
    [Google Scholar]
  12. Jacoby G., Cattoir V., Hooper D., Martínez-Martínez L., Nordmann P., Pascual A., Poirel L., Wang M.. ( 2008;). qnr Gene nomenclature. . Antimicrob Agents Chemother 52:, 2297–2299. [CrossRef][PubMed]
    [Google Scholar]
  13. Jones G. L., Warren R. E., Skidmore S. J., Davies V. A., Gibreel T., Upton M.. ( 2008;). Prevalence and distribution of plasmid-mediated quinolone resistance genes in clinical isolates of Escherichia coli lacking extended-spectrum β-lactamases. . J Antimicrob Chemother 62:, 1245–1251. [CrossRef][PubMed]
    [Google Scholar]
  14. Kirchner M., Wearing H., Teale C.. ( 2011;). Plasmid-mediated quinolone resistance gene detected in Escherichia coli from cattle. . Vet Microbiol 148:, 434–435. [CrossRef][PubMed]
    [Google Scholar]
  15. Liu B. T., Liao X. P., Yue L., Chen X. Y., Li L., Yang S. S., Sun J., Zhang S., Liao S. D., Liu Y. H.. ( 2013;). Prevalence of β-lactamase and 16S rRNA methylase genes among clinical Escherichia coli isolates carrying plasmid-mediated quinolone resistance genes from animals. . Microb Drug Resist 19:, 237–245. [CrossRef][PubMed]
    [Google Scholar]
  16. Pan X. S., Ambler J., Mehtar S., Fisher L. M.. ( 1996;). Involvement of topoisomerase IV and DNA gyrase as ciprofloxacin targets in Streptococcus pneumoniae. . Antimicrob Agents Chemother 40:, 2321–2326.[PubMed]
    [Google Scholar]
  17. Pang X., Cao M., Zhang M., Lee B.. ( 2011;). Increased sensitivity for various rotavirus genotypes in stool specimens by amending three mismatched nucleotides in the forward primer of a real-time RT-PCR assay. . J Virol Methods 172:, 85–87. [CrossRef][PubMed]
    [Google Scholar]
  18. Park C. H., Robicsek A., Jacoby G. A., Sahm D., Hooper D. C.. ( 2006;). Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. . Antimicrob Agents Chemother 50:, 3953–3955. [CrossRef][PubMed]
    [Google Scholar]
  19. Reynolds R., Hope R., Williams L..BSAC Working Parties on Resistance Surveillance ( 2008;). Survey, laboratory and statistical methods for the BSAC Resistance Surveillance Programmes. . J Antimicrob Chemother 62: (Suppl 2), ii15–ii28. [CrossRef][PubMed]
    [Google Scholar]
  20. Rodríguez-Martínez J. M., Díaz de Alba P., Briales A., Machuca J., Lossa M., Fernández-Cuenca F., Rodríguez Baño J., Martínez-Martínez L., Pascual A.. ( 2013;). Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum-β-lactamase-producing Klebsiella pneumoniae. . J Antimicrob Chemother 68:, 68–73. [CrossRef][PubMed]
    [Google Scholar]
  21. Shaheen B. W., Nayak R., Foley S. L., Boothe D. M.. ( 2013;). Chromosomal and plasmid-mediated fluoroquinolone resistance mechanisms among broad-spectrum-cephalosporin-resistant Escherichia coli isolates recovered from companion animals in the USA. . J Antimicrob Chemother 68:, 1019–1024. [CrossRef][PubMed]
    [Google Scholar]
  22. Sipos R., Székely A. J., Palatinszky M., Révész S., Márialigeti K., Nikolausz M.. ( 2007;). Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. . FEMS Microbiol Ecol 60:, 341–350. [CrossRef][PubMed]
    [Google Scholar]
  23. Strahilevitz J., Jacoby G. A., Hooper D. C., Robicsek A.. ( 2009;). Plasmid-mediated quinolone resistance: a multifaceted threat. . Clin Microbiol Rev 22:, 664–689. [CrossRef][PubMed]
    [Google Scholar]
  24. Veldman K., Cavaco L. M., Mevius D., Battisti A., Franco A., Botteldoorn N., Bruneau M., Perrin-Guyomard A., Cerny T.. & other authors ( 2011;). International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. . J Antimicrob Chemother 66:, 1278–1286. [CrossRef][PubMed]
    [Google Scholar]
  25. Wang M., Guo Q., Xu X., Wang X., Ye X., Wu S., Hooper D. C., Wang M.. ( 2009;). New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. . Antimicrob Agents Chemother 53:, 1892–1897. [CrossRef][PubMed]
    [Google Scholar]
  26. Wareham D. W., Umoren I., Khanna P., Gordon N. C.. ( 2010;). Allele-specific polymerase chain reaction (PCR) for rapid detection of the aac(6′)-Ib-cr quinolone resistance gene. . Int J Antimicrob Agents 36:, 476–477. [CrossRef][PubMed]
    [Google Scholar]
  27. Woodford N.. ( 2010;). Rapid characterization of β-lactamases by multiplex PCR. . Methods Mol Biol 642:, 181–192. [CrossRef][PubMed]
    [Google Scholar]
  28. Yamane K., Wachino J., Suzuki S., Arakawa Y.. ( 2008;). Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. . Antimicrob Agents Chemother 52:, 1564–1566. [CrossRef][PubMed]
    [Google Scholar]
  29. Younes A., Hamouda A., Dave J., Amyes S. G.. ( 2011;). Prevalence of transferable blaCTX-M-15 from hospital- and community-acquired Klebsiella pneumoniae isolates in Scotland. . J Antimicrob Chemother 66:, 313–318. [CrossRef][PubMed]
    [Google Scholar]
  30. Yuan J., Xu X., Guo Q., Zhao X., Ye X., Guo Y., Wang M.. ( 2012;). Prevalence of the oqxAB gene complex in Klebsiella pneumoniae and Escherichia coli clinical isolates. . J Antimicrob Chemother 67:, 1655–1659. [CrossRef][PubMed]
    [Google Scholar]
  31. Zhang Y., Yang J., Ye L., Luo Y., Wang W., Zhou W., Cui Z., Han L.. ( 2012;). Characterization of clinical multidrug-resistant Escherichia coli and Klebsiella pneumoniae isolates, 2007-2009, China. . Microb Drug Resist 18:, 465–470. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.064428-0
Loading
/content/journal/jmm/10.1099/jmm.0.064428-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error