1887

Abstract

Toll-like receptor (TLR) signalling plays an important role in epithelial and immune cells of the intestine. TLR9 recognizes unmethylated CpG motifs in bacterial DNA, and TLR9 signalling maintains the gut epithelial homeostasis. Here, we carried out a bioinformatic analysis of the frequency of CpG motifs in the genomes of gut commensal bacteria across major bacterial phyla. The frequency of potentially immunostimulatory CpG motifs (all CpG hexamers) or purine-purine-CG-pyrimidine-pyrimidine hexamers was linearly dependent on the genomic G+C content. We found that species belonging to , and (including bifidobacteria) carried high counts of GTCGTT, the optimal motif stimulating human TLR9. We also found that , , and , whose strains have been marketed as probiotics, had high counts of GTCGTT motifs. As gut bacterial species differ significantly in their genomic content of CpG motifs, the overall load of CpG motifs in the intestine depends on the species assembly of microbiota and their cell numbers. The optimal CpG motif content of microbiota may depend on the host’s physiological status and, consequently, on an adequate level of TLR9 signalling. We speculate that microbiota with increased numbers of microbes with CpG motif-rich DNA could better support mucosal functions in healthy individuals and improve the T-helper 1 (Th1)/Th2 imbalance in allergic diseases. In autoimmune disorders, CpG motif-rich DNA could, however, further increase the Th1-type immune responsiveness. Estimation of the load of microbe-associated molecular patterns, including CpG motifs, in gut microbiota could shed new light on host–microbe interactions across a range of diseases.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.064220-0
2014-02-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/2/293.html?itemId=/content/journal/jmm/10.1099/jmm.0.064220-0&mimeType=html&fmt=ahah

References

  1. Abrahamsson T. R., Jakobsson H. E., Andersson A. F., Björkstén B., Engstrand L., Jenmalm M. C. 2012; Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 129:434–440, e1–e2 [View Article][PubMed]
    [Google Scholar]
  2. Abreu M. T. 2010; Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10:131–144 Erratum Nat Rev Immunol 10:215 [View Article][PubMed]
    [Google Scholar]
  3. Altermann E., Russell W. M., Azcarate-Peril M. A., Barrangou R., Buck B. L., McAuliffe O., Souther N., Dobson A., Duong T. other authors 2005; Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102:3906–3912 [View Article][PubMed]
    [Google Scholar]
  4. Balasubramanian D., Schneper L., Kumari H., Mathee K. 2013; A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 41:1–20 [View Article][PubMed]
    [Google Scholar]
  5. Barton G. M., Kagan J. C., Medzhitov R. 2006; Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 7:49–56 [View Article][PubMed]
    [Google Scholar]
  6. Brown S. D., Gilmour C. C., Kucken A. M., Wall J. D., Elias D. A., Brandt C. C., Podar M., Chertkov O., Held B. other authors 2011; Genome sequence of the mercury-methylating strain Desulfovibrio desulfuricans ND132. J Bacteriol 193:2078–2079 [View Article][PubMed]
    [Google Scholar]
  7. Calcaterra C., Sfondrini L., Rossini A., Sommariva M., Rumio C., Ménard S., Balsari A. 2008; Critical role of TLR9 in acute graft-versus-host disease. J Immunol 181:6132–6139[PubMed] [CrossRef]
    [Google Scholar]
  8. Callanan M., Kaleta P., O’Callaghan J., O’Sullivan O., Jordan K., McAuliffe O., Sangrador-Vegas A., Slattery L., Fitzgerald G. F. other authors 2008; Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 190:727–735 [View Article][PubMed]
    [Google Scholar]
  9. Cario E., Gerken G., Podolsky D. K. 2004; Toll-like receptor 2 enhances ZO-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127:224–238 [View Article][PubMed]
    [Google Scholar]
  10. Cerdeño-Tárraga A. M., Efstratiou A., Dover L. G., Holden M. T., Pallen M., Bentley S. D., Besra G. S., Churcher C., James K. D. other authors 2003; The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. Nucleic Acids Res 31:6516–6523 [View Article][PubMed]
    [Google Scholar]
  11. Cerdeño-Tárraga A. M., Patrick S., Crossman L. C., Blakely G., Abratt V., Lennard N., Poxton I., Duerden B., Harris B. other authors 2005; Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307:1463–1465 [View Article][PubMed]
    [Google Scholar]
  12. Cheng J., Kalliomäki M., Heilig H. G., Palva A., Lähteenoja H., de Vos W. M., Salojärvi J., Satokari R. 2013; Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC Gastroenterol 13:113 [View Article][PubMed]
    [Google Scholar]
  13. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [View Article][PubMed]
    [Google Scholar]
  14. de Kivit S., van Hoffen E., Korthagen N., Garssen J., Willemsen L. E. 2011; Apical TLR ligation of intestinal epithelial cells drives a Th1-polarized regulatory or inflammatory type effector response in vitro . Immunobiology 216:518–527 [View Article][PubMed]
    [Google Scholar]
  15. Denapaite D., Brückner R., Nuhn M., Reichmann P., Henrich B., Maurer P., Schähle Y., Selbmann P., Zimmermann W. other authors 2010; The genome of Streptococcus mitis B6 – what is a commensal?. PLoS ONE 5:e9426 [View Article][PubMed]
    [Google Scholar]
  16. Downard C. D., Renaud E., St Peter S. D., Abdullah F., Islam S., Saito J. M., Blakely M. L., Huang E. Y., Arca M. J. other authors 2012; Treatment of necrotizing enterocolitis: an American Pediatric Surgical Association Outcomes and Clinical Trials Committee systematic review. J Pediatr Surg 47:2111–2122 [View Article][PubMed]
    [Google Scholar]
  17. Ewaschuk J. B., Diaz H., Meddings L., Diederichs B., Dmytrash A., Backer J., Looijer-van Langen M., Madsen K. L. 2008; Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 295:G1025–G1034 [View Article][PubMed]
    [Google Scholar]
  18. Falagas M. E., Kastoris A. C., Kapaskelis A. M., Karageorgopoulos D. E. 2010; Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 10:43–50 [View Article][PubMed]
    [Google Scholar]
  19. Foureau D. M., Mielcarz D. W., Menard L. C., Schulthess J., Werts C., Vasseur V., Ryffel B., Kasper L. H., Buzoni-Gatel D. 2010; TLR9-dependent induction of intestinal α-defensins by Toxoplasma gondii . J Immunol 184:7022–7029 [View Article][PubMed]
    [Google Scholar]
  20. Ghadimi D., Vrese M., Heller K. J., Schrezenmeir J. 2010; Effect of natural commensal-origin DNA on Toll-like receptor 9 (TLR9) signaling cascade, chemokine IL-8 expression, and barrier integritiy of polarized intestinal epithelial cells. Inflamm Bowel Dis 16:410–427 [View Article][PubMed]
    [Google Scholar]
  21. Gilmour M. W., Graham M., Van Domselaar G., Tyler S., Kent H., Trout-Yakel K. M., Larios O., Allen V., Lee B., Nadon C. 2010; High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 11:120 [View Article][PubMed]
    [Google Scholar]
  22. Goto T., Yamashita A., Hirakawa H., Matsutani M., Todo K., Ohshima K., Toh H., Miyamoto K., Kuhara S. other authors 2008; Complete genome sequence of Finegoldia magna, an anaerobic opportunistic pathogen. DNA Res 15:39–47 [View Article][PubMed]
    [Google Scholar]
  23. Gribar S. C., Anand R. J., Sodhi C. P., Hackam D. J. 2008; The role of epithelial Toll-like receptor signaling in the pathogenesis of intestinal inflammation. J Leukoc Biol 83:493–498 [View Article][PubMed]
    [Google Scholar]
  24. Gribar S. C., Sodhi C. P., Richardson W. M., Anand R. J., Gittes G. K., Branca M. F., Jakub A., Shi X. H., Shah S. other authors 2009; Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis. J Immunol 182:636–646[PubMed] [CrossRef]
    [Google Scholar]
  25. Harmsen H. J., Wildeboer-Veloo A. C., Raangs G. C., Wagendorp A. A., Klijn N., Bindels J. G., Welling G. W. 2000; Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67 [View Article][PubMed]
    [Google Scholar]
  26. Hartmann G., Krieg A. M. 2000; Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 164:944–953[PubMed] [CrossRef]
    [Google Scholar]
  27. Heimesaat M. M., Nogai A., Bereswill S., Plickert R., Fischer A., Loddenkemper C., Steinhoff U., Tchaptchet S., Thiel E. other authors 2010; MyD88/TLR9 mediated immunopathology and gut microbiota dynamics in a novel murine model of intestinal graft-versus-host disease. Gut 59:1079–1087 [View Article][PubMed]
    [Google Scholar]
  28. Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H. other authors 2000; A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745 [View Article][PubMed]
    [Google Scholar]
  29. Hotte N. S., Salim S. Y., Tso R. H., Albert E. J., Bach P., Walker J., Dieleman L. A., Fedorak R. N., Madsen K. L. 2012; Patients with inflammatory bowel disease exhibit dysregulated responses to microbial DNA. PLoS ONE 7:e37932 [View Article][PubMed]
    [Google Scholar]
  30. Ikeda M., Nakagawa S. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109 [View Article][PubMed]
    [Google Scholar]
  31. Iliev I. D., Kitazawa H., Shimosato T., Katoh S., Morita H., He F., Hosoda M., Saito T. 2005; Strong immunostimulation in murine immune cells by Lactobacillus rhamnosus GG DNA containing novel oligodeoxynucleotide pattern. Cell Microbiol 7:403–414 (Erratum in Cell Microbiol 7, 611) [View Article][PubMed]
    [Google Scholar]
  32. Ivanova N., Sorokin A., Anderson I., Galleron N., Candelon B., Kapatral V., Bhattacharyya A., Reznik G., Mikhailova N. other authors 2003; Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis . Nature 423:87–91 [View Article][PubMed]
    [Google Scholar]
  33. Kalliomäki M., Kirjavainen P., Eerola E., Kero P., Salminen S., Isolauri E. 2001a; Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 107:129–134 [View Article][PubMed]
    [Google Scholar]
  34. Kalliomäki M., Salminen S., Arvilommi H., Kero P., Koskinen P., Isolauri E. 2001b; Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357:1076–1079 [View Article][PubMed]
    [Google Scholar]
  35. Kalliomäki M., Satokari R., Lähteenoja H., Vähämiko S., Grönlund J., Routi T., Salminen S. 2012; Expression of microbiota, Toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J Pediatr Gastroenterol Nutr 54:727–732 [View Article][PubMed]
    [Google Scholar]
  36. Kankainen M., Paulin L., Tynkkynen S., von Ossowski I., Reunanen J., Partanen P., Satokari R., Vesterlund S., Hendrickx A. P. other authors 2009; Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci U S A 106:17193–17198 [View Article][PubMed]
    [Google Scholar]
  37. Kitazawa H., Watanabe H., Shimosato T., Kawai Y., Itoh T., Saito T. 2003; Immunostimulatory oligonucleotide, CpG-like motif exists in Lactobacillus delbrueckii ssp. bulgaricus NIAI B6. Int J Food Microbiol 85:11–21 [View Article][PubMed]
    [Google Scholar]
  38. Kleerebezem M., Boekhorst J., van Kranenburg R., Molenaar D., Kuipers O. P., Leer R., Tarchini R., Peters S. A., Sandbrink H. M. other authors 2003; Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995 [View Article][PubMed]
    [Google Scholar]
  39. Krieg A. M. 2002; CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760 [View Article][PubMed]
    [Google Scholar]
  40. Krieg A. M. 2012; CpG still rocks! Update on an accidental drug. Nucleic Acid Ther 22:77–89[PubMed]
    [Google Scholar]
  41. Krieg A. M., Yi A. K., Matson S., Waldschmidt T. J., Bishop G. A., Teasdale R., Koretzky G. A., Klinman D. M. 1995; CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546–549 [View Article][PubMed]
    [Google Scholar]
  42. Lee J., Mo J. H., Katakura K., Alkalay I., Rucker A. N., Liu Y. T., Lee H. K., Shen C., Cojocaru G. other authors 2006; Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 8:1327–1336 [View Article][PubMed]
    [Google Scholar]
  43. Lee K. W., Jung J., Lee Y., Kim T. Y., Choi S. Y., Park J., Kim D. S., Kwon H. J. 2006; Immunostimulatory oligodeoxynucleotide isolated from genome wide screening of Mycobacterium bovis chromosomal DNA. Mol Immunol 43:2107–2118 [View Article][PubMed]
    [Google Scholar]
  44. Lee J. H., Karamychev V. N., Kozyavkin S. A., Mills D., Pavlov A. R., Pavlova N. V., Polouchine N. N., Richardson P. M., Shakhova V. V. other authors 2008; Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. BMC Genomics 9:247 [View Article][PubMed]
    [Google Scholar]
  45. Lin A. C., Liao T. L., Lin Y. C., Lai Y. C., Lu M. C., Chen Y. T. 2012; Complete genome sequence of Klebsiella pneumoniae 1084, a hypermucoviscosity-negative K1 clinical strain. J Bacteriol 194:6316 [View Article][PubMed]
    [Google Scholar]
  46. Mahowald M. A., Rey F. E., Seedorf H., Turnbaugh P. J., Fulton R. S., Wollam A., Shah N., Wang C., Magrini V. other authors 2009; Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc Natl Acad Sci U S A 106:5859–5864 [View Article][PubMed]
    [Google Scholar]
  47. Makarova K., Slesarev A., Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V. other authors 2006; Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103:15611–15616 [View Article][PubMed]
    [Google Scholar]
  48. Maus I., Wibberg D., Stantscheff R., Eikmeyer F. G., Seffner A., Boelter J., Szczepanowski R., Blom J., Jaenicke S. other authors 2012; Complete genome sequence of the hydrogenotrophic, methanogenic archaeon Methanoculleus bourgensis strain MS2T, isolated from a sewage sludge digester. J Bacteriol 194:5487–5488 [View Article][PubMed]
    [Google Scholar]
  49. Maynard C. L., Elson C. O., Hatton R. D., Weaver C. T. 2012; Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–241 [View Article][PubMed]
    [Google Scholar]
  50. Mazé A., Boël G., Zúñiga M., Bourand A., Loux V., Yebra M. J., Monedero V., Correia K., Jacques N. other authors 2010; Complete genome sequence of the probiotic Lactobacillus casei strain BL23. J Bacteriol 192:2647–2648 [View Article][PubMed]
    [Google Scholar]
  51. McClelland M., Sanderson K. E., Clifton S. W., Latreille P., Porwollik S., Sabo A., Meyer R., Bieri T., Ozersky P. other authors 2004; Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36:1268–1274 [View Article][PubMed]
    [Google Scholar]
  52. Ménard O., Gafa V., Kapel N., Rodriguez B., Butel M. J., Waligora-Dupriet A. J. 2010; Characterization of immunostimulatory CpG-rich sequences from different Bifidobacterium species. Appl Environ Microbiol 76:2846–2855 [View Article][PubMed]
    [Google Scholar]
  53. Myers G. S., Rasko D. A., Cheung J. K., Ravel J., Seshadri R., DeBoy R. T., Ren Q., Varga J., Awad M. M. other authors 2006; Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens . Genome Res 16:1031–1040 [View Article][PubMed]
    [Google Scholar]
  54. Nava G. M., Carbonero F., Croix J. A., Greenberg E., Gaskins H. R. 2012; Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J 6:57–70 [View Article][PubMed]
    [Google Scholar]
  55. Neoh H. M., Cui L., Yuzawa H., Takeuchi F., Matsuo M., Hiramatsu K. 2008; Mutated response regulator graR is responsible for phenotypic conversion of Staphylococcus aureus from heterogeneous vancomycin-intermediate resistance to vancomycin-intermediate resistance. Antimicrob Agents Chemother 52:45–53 [View Article][PubMed]
    [Google Scholar]
  56. Nishio Y., Nakamura Y., Kawarabayasi Y., Usuda Y., Kimura E., Sugimoto S., Matsui K., Yamagishi A., Kikuchi H. other authors 2003; Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens . Genome Res 13:1572–1579 [View Article][PubMed]
    [Google Scholar]
  57. Nylund L., Satokari R., Nikkilä J., Rajilić-Stojanović M., Kalliomäki M., Isolauri E., Salminen S., de Vos W. M. 2013; Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiol 13:12 [View Article][PubMed]
    [Google Scholar]
  58. O’Hara J. R., Feener T. D., Fischer C. D., Buret A. G. 2012; Campylobacter jejuni disrupts protective Toll-like receptor 9 signaling in colonic epithelial cells and increases the severity of dextran sulfate sodium-induced colitis in mice. Infect Immun 80:1563–1571 [View Article][PubMed]
    [Google Scholar]
  59. Parkhill J., Wren B. W., Mungall K., Ketley J. M., Churcher C., Basham D., Chillingworth T., Davies R. M., Feltwell T. other authors 2000; The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665–668 [View Article][PubMed]
    [Google Scholar]
  60. Paulsen I. T., Banerjei L., Myers G. S., Nelson K. E., Seshadri R., Read T. D., Fouts D. E., Eisen J. A., Gill S. R. other authors 2003; Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis . Science 299:2071–2074 [View Article][PubMed]
    [Google Scholar]
  61. Pearson M. M., Sebaihia M., Churcher C., Quail M. A., Seshasayee A. S., Luscombe N. M., Abdellah Z., Arrosmith C., Atkin B. other authors 2008; Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J Bacteriol 190:4027–4037 [View Article][PubMed]
    [Google Scholar]
  62. Pedersen G., Andresen L., Matthiessen M. W., Rask-Madsen J., Brynskov J. 2005; Expression of Toll-like receptor 9 and response to bacterial CpG oligodeoxynucleotides in human intestinal epithelium. Clin Exp Immunol 141:298–306 [View Article][PubMed]
    [Google Scholar]
  63. Picard C., Fioramonti J., Francois A., Robinson T., Neant F., Matuchansky C. 2005; Review article: bifidobacteria as probiotic agents – physiological effects and clinical benefits. Aliment Pharmacol Ther 22:495–512 [View Article][PubMed]
    [Google Scholar]
  64. Platz J., Beisswenger C., Dalpke A., Koczulla R., Pinkenburg O., Vogelmeier C., Bals R. 2004; Microbial DNA induces a host defense reaction of human respiratory epithelial cells. J Immunol 173:1219–1223[PubMed] [CrossRef]
    [Google Scholar]
  65. Poehlein A., Zverlov V. V., Daniel R., Schwarz W. H., Liebl W. 2013; Complete genome sequence of Clostridium stercorarium subsp. stercorarium strain DSM 8532, a thermophilic degrader of plant cell wall fibers. Genome Announc 1:e0007313[PubMed]
    [Google Scholar]
  66. Rachmilewitz D., Katakura K., Karmeli F., Hayashi T., Reinus C., Rudensky B., Akira S., Takeda K., Lee J. other authors 2004; Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126:520–528 [View Article][PubMed]
    [Google Scholar]
  67. Rankin R., Pontarollo R., Ioannou X., Krieg A. M., Hecker R., Babiuk L. A., van Drunen Littel-van den Hurk S. 2001; CpG motif identification for veterinary and laboratory species demonstrates that sequence recognition is highly conserved. Antisense Nucleic Acid Drug Dev 11:333–340 [View Article][PubMed]
    [Google Scholar]
  68. Rice P., Longden I., Bleasby A. 2000; emboss: The European Molecular Biology Open Software Suite. Trends Genet 16:276–277 [View Article][PubMed]
    [Google Scholar]
  69. Roh H., Ko H. J., Kim D., Choi D. G., Park S., Kim S., Chang I. S., Choi I. G. 2011; Complete genome sequence of a carbon monoxide-utilizing acetogen, Eubacterium limosum KIST612. J Bacteriol 193:307–308 [View Article][PubMed]
    [Google Scholar]
  70. Samuel B. S., Hansen E. E., Manchester J. K., Coutinho P. M., Henrissat B., Fulton R., Latreille P., Kim K., Wilson R. K., Gordon J. I. 2007; Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci U S A 104:10643–10648 [View Article][PubMed]
    [Google Scholar]
  71. Satokari R., Grönroos T., Laitinen K., Salminen S., Isolauri E. 2009; Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 48:8–12 [View Article][PubMed]
    [Google Scholar]
  72. Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeño-Tárraga A. M. other authors 2006; The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786 [View Article][PubMed]
    [Google Scholar]
  73. Sela D. A., Chapman J., Adeuya A., Kim J. H., Chen F., Whitehead T. R., Lapidus A., Rokhsar D. S., Lebrilla C. B. other authors 2008; The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A 105:18964–18969 [View Article][PubMed]
    [Google Scholar]
  74. Shimizu T., Ohtani K., Hirakawa H., Ohshima K., Yamashita A., Shiba T., Ogasawara N., Hattori M., Kuhara S., Hayashi H. 2002; Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci U S A 99:996–1001 [View Article][PubMed]
    [Google Scholar]
  75. Shin S. H., Kim S., Kim J. Y., Lee S., Um Y., Oh M. K., Kim Y. R., Lee J., Yang K. S. 2012; Complete genome sequence of Enterobacter aerogenes KCTC 2190.. J Bacteriol 194:2373–2374 [View Article][PubMed]
    [Google Scholar]
  76. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [View Article][PubMed]
    [Google Scholar]
  77. Takeuchi F., Watanabe S., Baba T., Yuzawa H., Ito T., Morimoto Y., Kuroda M., Cui L., Takahashi M. other authors 2005; Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J Bacteriol 187:7292–7308 [View Article][PubMed]
    [Google Scholar]
  78. Tauch A., Kaiser O., Hain T., Goesmann A., Weisshaar B., Albersmeier A., Bekel T., Bischoff N., Brune I. other authors 2005; Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora. J Bacteriol 187:4671–4682 [View Article][PubMed]
    [Google Scholar]
  79. Tauch A., Trost E., Tilker A., Ludewig U., Schneiker S., Goesmann A., Arnold W., Bekel T., Brinkrolf K. other authors 2008; The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing. J Biotechnol 136:11–21 [View Article][PubMed]
    [Google Scholar]
  80. Thomson N. R., Howard S., Wren B. W., Holden M. T., Crossman L., Challis G. L., Churcher C., Mungall K., Brooks K. other authors 2006; The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet 2:e206 [View Article][PubMed]
    [Google Scholar]
  81. Touchon M., Hoede C., Tenaillon O., Barbe V., Baeriswyl S., Bidet P., Bingen E., Bonacorsi S., Bouchier C. other authors 2009; Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5:e1000344 [View Article][PubMed]
    [Google Scholar]
  82. Turroni F., Bottacini F., Foroni E., Mulder I., Kim J. H., Zomer A., Sánchez B., Bidossi A., Ferrarini A. other authors 2010; Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci U S A 107:19514–19519 [View Article][PubMed]
    [Google Scholar]
  83. van de Guchte M., Penaud S., Grimaldi C., Barbe V., Bryson K., Nicolas P., Robert C., Oztas S., Mangenot S. other authors 2006; The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 103:9274–9279 [View Article][PubMed]
    [Google Scholar]
  84. van Passel M. W., Kant R., Zoetendal E. G., Plugge C. M., Derrien M., Malfatti S. A., Chain P. S., Woyke T., Palva A. other authors 2011; The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6:e16876 [View Article][PubMed]
    [Google Scholar]
  85. Wegmann U., O’Connell-Motherway M., Zomer A., Buist G., Shearman C., Canchaya C., Ventura M., Goesmann A., Gasson M. J. other authors 2007; Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol 189:3256–3270 [View Article][PubMed]
    [Google Scholar]
  86. Wells J. M., Rossi O., Meijerink M., van Baarlen P. 2011; Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci U S A 108:Suppl 14607–4614 [View Article][PubMed]
    [Google Scholar]
  87. Xu J., Bjursell M. K., Himrod J., Deng S., Carmichael L. K., Chiang H. C., Hooper L. V., Gordon J. I. 2003; A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299:2074–2076 [View Article][PubMed]
    [Google Scholar]
  88. Xu J., Mahowald M. A., Ley R. E., Lozupone C. A., Hamady M., Martens E. C., Henrissat B., Coutinho P. M., Minx P. other authors 2007; Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol 5:e156 [View Article][PubMed]
    [Google Scholar]
  89. Xu P., Alves J. M., Kitten T., Brown A., Chen Z., Ozaki L. S., Manque P., Ge X., Serrano M. G. other authors 2007; Genome of the opportunistic pathogen Streptococcus sanguinis . J Bacteriol 189:3166–3175 [View Article][PubMed]
    [Google Scholar]
  90. Yang F., Yang J., Zhang X., Chen L., Jiang Y., Yan Y., Tang X., Wang J., Xiong Z. other authors 2005; Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 33:6445–6458 [View Article][PubMed]
    [Google Scholar]
  91. Yi A. K., Chang M., Peckham D. W., Krieg A. M., Ashman R. F. 1998; CpG oligodeoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cycle entry. J Immunol 160:5898–5906[PubMed]
    [Google Scholar]
  92. Yu D., Putta M. R., Bhagat L., Li Y., Zhu F., Wang D., Tang J. X., Kandimalla E. R., Agrawal S. 2007; Agonists of Toll-like receptor 9 containing synthetic dinucleotide motifs. J Med Chem 50:6411–6418 [View Article][PubMed]
    [Google Scholar]
  93. Yu D. S., Jeong H., Lee D. H., Kwon S. K., Song J. Y., Kim B. K., Park M. S., Ji G. E., Oh T. K., Kim J. F. 2012; Complete genome sequence of the probiotic bacterium Bifidobacterium bifidum strain BGN4. J Bacteriol 194:4757–4758 [View Article][PubMed]
    [Google Scholar]
  94. Zakikhany K., Efstratiou A. 2012; Diphtheria in Europe: current problems and new challenges. Future Microbiol 7:595–607 [View Article][PubMed]
    [Google Scholar]
  95. Zhan Y., Yan Y., Zhang W., Yu H., Chen M., Lu W., Ping S., Peng Z., Yuan M. other authors 2011; Genome sequence of Acinetobacter calcoaceticus PHEA-2, isolated from industry wastewater. J Bacteriol 193:2672–2673 [View Article][PubMed]
    [Google Scholar]
  96. Zhang Y. Q., Ren S. X., Li H. L., Wang Y. X., Fu G., Yang J., Qin Z. Q., Miao Y. G., Wang W. Y. other authors 2003; Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol 49:1577–1593 [View Article][PubMed]
    [Google Scholar]
  97. Zhurina D., Zomer A., Gleinser M., Brancaccio V. F., Auchter M., Waidmann M. S., Westermann C., van Sinderen D., Riedel C. U. 2011; Complete genome sequence of Bifidobacterium bifidum S17. J Bacteriol 193:301–302 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.064220-0
Loading
/content/journal/jmm/10.1099/jmm.0.064220-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error