1887

Abstract

Candidiasis is a major opportunistic fungal infection in humans, and its incidence has increased steadily over the last two decades. , the main species of the genus, has a large arsenal of virulence attributes that contribute to successful infections, such as dimorphism and biofilm formation. The adverse effects of eukaryotic antimicrobial therapies associated with an increase in resistance to the compounds presently available have boosted efforts to improve the therapeutic arsenal against candidiasis with a newer and cheaper range of drugs. In this study, a novel nerolidol-rich essential oil (EO) derived from (Miq.) C. DC., Piperaceae, was tested on the growth, transition (yeast to hyphae), formation and stability of biofilms produced by . Both inflorescence and leaf EOs were evaluated and revealed MIC values ranging from 0.04 to 0.1 % and 0.2 to 1.26 %, respectively. Furthermore, leaf EO managed to downregulate the yeast-to-hyphae transition by 81 %, as well as reducing biofilm formation by about 30 and 50 % after incubation for 24 and 48 h, respectively. The EO was also able to reduce the viability of pre-formed biofilm by 63.9 %. Finally, the association between the leaf EO and fluconazole was evaluated and revealed an interesting synergistic effect. Taken together, these results demonstrate that this novel compound could be a promising agent and could reinforce the arsenal of therapeutic alternatives for the treatment of candidiasis. Furthermore, it may represent a novel and natural source of nerolidol, which could be of interest pharmaceutically.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.063834-0
2014-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/5/697.html?itemId=/content/journal/jmm/10.1099/jmm.0.063834-0&mimeType=html&fmt=ahah

References

  1. Alviano W. S., Mendonça-Filho R. R., Alviano D. S., Bizzo H. R., Souto-Padrón T., Rodrigues M. L., Bolognese A. M., Alviano C. S., Souza M. M.. ( 2005;). Antimicrobial activity of Croton cajucara Benth linalool-rich essential oil on artificial biofilms and planktonic microorganisms. . Oral Microbiol Immunol 20:, 101–105. [CrossRef][PubMed]
    [Google Scholar]
  2. Arruda D. C., D’Alexandri F. L., Katzin A. M., Uliana S. R. B.. ( 2005;). Antileishmanial activity of the terpene nerolidol. . Antimicrob Agents Chemother 49:, 1679–1687. [CrossRef][PubMed]
    [Google Scholar]
  3. Baillie G. S., Douglas L. J.. ( 2000;). Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. . J Antimicrob Chemother 46:, 397–403. [CrossRef][PubMed]
    [Google Scholar]
  4. Borefreund E., Puerner J.. ( 1985).;Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24:, 119–124. [CrossRef][PubMed]
    [Google Scholar]
  5. Casanova M., Cervera A. M., Gozalbo D., Martínez J. P.. ( 1997;). Hemin induces germ tube formation in Candida albicans. . Infect Immun 65:, 4360–4364.[PubMed]
    [Google Scholar]
  6. CLSI ( 2002;). Reference Method for Broth Dilution Antifungal Susceptibility Testing for Yeasts, Approved Standard, 2nd edn, M27–A2. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  7. Finkel J. S., Mitchell A. P.. ( 2011;). Genetic control of Candida albicans biofilm development. . Nat Rev Microbiol 9:, 109–118. [CrossRef][PubMed]
    [Google Scholar]
  8. Garcia-Gomes A. S., Curvelo J. A. R., Soares R. M. A., Ferreira-Pereira A.. ( 2012;). Curcumin acts synergistically with fluconazole to sensitize a clinical isolate of Candida albicans showing a MDR phenotype. . Med Mycol 50:, 26–32. [CrossRef][PubMed]
    [Google Scholar]
  9. Han T. L., Cannon R. D., Villas-Bôas S. G.. ( 2011;). The metabolic basis of Candida albicans morphogenesis and quorum sensing. . Fungal Genet Biol 48:, 747–763. [CrossRef][PubMed]
    [Google Scholar]
  10. Han T. L., Tumanov S., Cannon R. D., Villas-Boas S. G.. ( 2013;). Metabolic response of Candida albicans to phenylethyl alcohol under hyphae-inducing conditions. . PLoS ONE 8:, e71364. [CrossRef][PubMed]
    [Google Scholar]
  11. Hsu C. C., Lai W. L., Chuang K. C., Lee M. H., Tsai Y. C.. ( 2013;). The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans.. Med Mycol 51:, 473–482. [CrossRef][PubMed]
    [Google Scholar]
  12. Khan A., Ahmad A., Akhtar F., Yousuf S., Xess I., Khan L. A., Manzoor N.. ( 2010;). Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. . Res Microbiol 161:, 816–823. [CrossRef][PubMed]
    [Google Scholar]
  13. Kojic E. M., Darouiche R. O.. ( 2004;). Candida infections of medical devices. . Clin Microbiol Rev 17:, 255–267. [CrossRef][PubMed]
    [Google Scholar]
  14. Kumamoto C. A., Vinces M. D.. ( 2005;). Contributions of hyphae and hypha-co-regulated genes to Candida albicans virulence. . Cell Microbiol 7:, 1546–1554. [CrossRef][PubMed]
    [Google Scholar]
  15. Lupetti A., Nibbering P. H., Campa M., Del Tacca M., Danesi R.. ( 2003;). Molecular targeted treatments for fungal infections: the role of drug combinations. . Trends Mol Med 9:, 269–276. [CrossRef][PubMed]
    [Google Scholar]
  16. Marques A. M., Barreto A. L. S., Batista E. M., Curvelo J. A. R., Velozo L. S. M., Moreira Dde. L., Guimarães E. F., Soares R. M. A., Kaplan M. A.. ( 2010;). Chemistry and biological activity of essential oils from Piper claussenianum (Piperaceae). . Nat Prod Commun 5:, 1837–1840.[PubMed]
    [Google Scholar]
  17. Martins M., Henriques M., Azeredo J., Rocha S. M., Coimbra M. A., Oliveira R.. ( 2007;). Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. . Eukaryot Cell 6:, 2429–2436. [CrossRef][PubMed]
    [Google Scholar]
  18. Mukherjee P. K., Sheehan D. J., Hitchcock C. A., Ghannoum M. A.. ( 2005;). Combination treatment of invasive fungal infections. . Clin Microbiol Rev 18:, 163–194. [CrossRef][PubMed]
    [Google Scholar]
  19. Mukherjee P. K., Mohamed S., Chandra J., Kuhn D., Liu S., Antar O. S., Munyon R., Mitchell A. P., Andes D.. & other authors ( 2006;). Alcohol dehydrogenase restricts the ability of the pathogen Candida albicans to form a biofilm on catheter surfaces through an ethanol-based mechanism. . Infect Immun 74:, 3804–3816. [CrossRef][PubMed]
    [Google Scholar]
  20. Nobile C. J., Mitchell A. P.. ( 2005;). Regulation of cell-surface genes and biofilm formation by the C. albicans transcription factor Bcr1p. . Curr Biol 15:, 1150–1155. [CrossRef][PubMed]
    [Google Scholar]
  21. Nobile C. J., Schneider H. A., Nett J. E., Sheppard D. C., Filler S. G., Andes D. R., Mitchell A. P.. ( 2008;). Complementary adhesin function in C. albicans biofilm formation. . Curr Biol 18:, 1017–1024. [CrossRef][PubMed]
    [Google Scholar]
  22. Odds F. C.. ( 1994;). Pathogenesis of Candida infections. . J Am Acad Dermatol 31:, S2–S5. [CrossRef][PubMed]
    [Google Scholar]
  23. Odds F. C.. ( 2003;). Synergy, antagonism, and what the chequerboard puts between them. . J Antimicrob Chemother 52:, 1. [CrossRef][PubMed]
    [Google Scholar]
  24. Pículo F., Guiraldeli Macedo C., de Andrade S. F., Luis Maistro E.. ( 2011;). In vivo genotoxicity assessment of nerolidol. . J Appl Toxicol 31:, 633–639. [CrossRef][PubMed]
    [Google Scholar]
  25. Portela M. B., Souza I. P., Abreu C. M., Bertolini M., Holandino C., Alviano C. S., Santos A. L., Soares R. M. A.. ( 2010;). Effect of serine-type protease of Candida spp. isolated from linear gingival erythema of HIV-positive children: critical factors in the colonization. . J Oral Pathol Med 39:, 753–760. [CrossRef][PubMed]
    [Google Scholar]
  26. Ramage G., Saville S. P., Thomas D. P., López-Ribot J. L.. ( 2005;). Candida biofilms: an update. . Eukaryot Cell 4:, 633–638. [CrossRef][PubMed]
    [Google Scholar]
  27. Thein Z. M., Samaranayake Y. H., Samaranayake L. P.. ( 2007;). In vitro biofilm formation of Candida albicans and non-albicans Candida species under dynamic and anaerobic conditions. . Arch Oral Biol 52:, 761–767. [CrossRef][PubMed]
    [Google Scholar]
  28. Uppuluri P., Pierce C. G., Thomas D. P., Bubeck S. S., Saville S. P., Lopez-Ribot J. L.. ( 2010;). The transcriptional regulator Nrg1p controls Candida albicans biofilm formation and dispersion. . Eukaryot Cell 9:, 1531–1537. [CrossRef][PubMed]
    [Google Scholar]
  29. Vila T. V., Ishida K., de Souza W., Prousis K., Calogeropoulou T., Rozental S.. ( 2013;). Effect of alkylphospholipids on Candida albicans biofilm formation and maturation. . J Antimicrob Chemother 68:, 113–125. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.063834-0
Loading
/content/journal/jmm/10.1099/jmm.0.063834-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error