1887

Abstract

meningitis has recently become an increasingly common cause of central nervous system infection. The invasion of bacteria within the subarachnoid space stimulates the release of pro-inflammatory cytokines and chemokines, triggering a host immune response. The aim of the present study was to evaluate memory and pro-inflammatory mediators at different times in the brains of adult Wistar rats with meningitis. The animals were sacrificed at 6, 12, 24, 48 and 96 h after meningitis induction. The hippocampus, frontal cortex and cerebrospinal fluid were isolated to determine the cytokine, chemokine and brain-derived neurotrophic factor (BDNF) levels. In the first 6 and 24 h following meningitis induction, there was a significant increase of the TNF-α, IL-1β, IL-6, cytokine-induced neutrophil chemoattractant-1 and BDNF levels in the central nervous system. Ten days after meningitis induction, cognitive memory was evaluated using an open-field task and step-down inhibitory avoidance task. In the control group, significant differences in behaviour were observed between the training and testing sessions for both tasks, demonstrating habituation and aversive memory. However, the meningitis group did not exhibit any difference between the training and testing sessions in either task, demonstrating memory impairment. As a result of these observations, we believe that the meningitis model may be a good research tool to study the biological mechanisms involved in the pathophysiology of this illness, while recognizing that animal models should be interpreted with caution before extrapolation to the clinic.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.063289-0
2014-01-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/63/1/111.html?itemId=/content/journal/jmm/10.1099/jmm.0.063289-0&mimeType=html&fmt=ahah

References

  1. Anisman H. , Hayley S. . ( 2012; ). Inflammatory factors contribute to depression and its comorbid conditions. . Sci Signal 5:, pe45. [CrossRef] [PubMed]
    [Google Scholar]
  2. Barichello T. , Savi G. D. , Silva G. Z. , Generoso J. S. , Bellettini G. , Vuolo F. , Petronilho F. , Feier G. , Comim C. M. . & other authors ( 2010; ). Antibiotic therapy prevents, in part, the oxidative stress in the rat brain after meningitis induced by Streptococcus pneumoniae . . Neurosci Lett 478:, 93–96. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barichello T. , Fagundes G. D. , Generoso J. S. , Paula Moreira A. , Costa C. S. , Zanatta J. R. , Simões L. R. , Petronilho F. , Dal-Pizzol F. . & other authors ( 2012a; ). Brain-blood barrier breakdown and pro-inflammatory mediators in neonate rats submitted meningitis by Streptococcus pneumoniae . . Brain Res 1471:, 162–168. [CrossRef] [PubMed]
    [Google Scholar]
  4. Barichello T. , Ceretta R. A. , Generoso J. S. , Moreira A. P. , Simões L. R. , Comim C. M. , Quevedo J. , Vilela M. C. , Zuardi A. W. . & other authors ( 2012b; ). Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis. . Eur J Pharmacol 697:, 158–164. [CrossRef] [PubMed]
    [Google Scholar]
  5. Barichello T. , Lemos J. C. , Generoso J. S. , Carradore M. M. , Moreira A. P. , Collodel A. , Zanatta J. R. , Valvassori S. S. , Quevedo J. . ( 2013; ). Evaluation of the brain-derived neurotrophic factor, nerve growth factor and memory in adult rats survivors of the neonatal meningitis by Streptococcus agalactiae . . Brain Res Bull 92:, 56–59. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bedford H. , de Louvois J. , Halket S. , Peckham C. , Hurley R. , Harvey D. . ( 2001; ). Meningitis in infancy in England and Wales: follow up at age 5 years. . BMJ 323:, 533–536. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bekinschtein P. , Cammarota M. , Igaz L. M. , Bevilaqua L. R. , Izquierdo I. , Medina J. H. . ( 2007; ). Persistence of long-term memory storage requires a late protein synthesis- and BDNF-dependent phase in the hippocampus. . Neuron 53:, 261–277. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bevilaqua L. R. , Kerr D. S. , Medina J. H. , Izquierdo I. , Cammarota M. . ( 2003; ). Inhibition of hippocampal Jun N-terminal kinase enhances short-term memory but blocks long-term memory formation and retrieval of an inhibitory avoidance task. . Eur J Neurosci 17:, 897–902. [CrossRef] [PubMed]
    [Google Scholar]
  9. Frey B. N. , Andreazza A. C. , Ceresér K. M. , Martins M. R. , Valvassori S. S. , Réus G. Z. , Quevedo J. , Kapczinski F. . ( 2006; ). Effects of mood stabilizers on hippocampus BDNF levels in an animal model of mania. . Life Sci 79:, 281–286. [CrossRef] [PubMed]
    [Google Scholar]
  10. Grandgirard D. , Schürch C. , Cottagnoud P. , Leib S. L. . ( 2007; ). Prevention of brain injury by the nonbacteriolytic antibiotic daptomycin in experimental pneumococcal meningitis. . Antimicrob Agents Chemother 51:, 2173–2178. [CrossRef] [PubMed]
    [Google Scholar]
  11. Hoogman M. , van de Beek D. , Weisfelt M. , de Gans J. , Schmand B. . ( 2007; ). Cognitive outcome in adults after bacterial meningitis. . J Neurol Neurosurg Psychiatry 78:, 1092–1096. [CrossRef] [PubMed]
    [Google Scholar]
  12. Irazuzta J. E. , Pretzlaff R. K. , Zingarelli B. , Xue V. , Zemlan F. . ( 2002; ). Modulation of nuclear factor-κB activation and decreased markers of neurological injury associated with hypothermic therapy in experimental bacterial meningitis. . Crit Care Med 30:, 2553–2559. [CrossRef] [PubMed]
    [Google Scholar]
  13. Izquierdo I. , Barros D. M. , Mello e Souza T. , de Souza M. M. , Izquierdo L. A. , Medina J. H. . ( 1998; ). Mechanisms for memory types differ. . Nature 393:, 635–636. [CrossRef] [PubMed]
    [Google Scholar]
  14. Jurgens H. A. , Johnson R. W. . ( 2012; ). Environmental enrichment attenuates hippocampal neuroinflammation and improves cognitive function during influenza infection. . Brain Behav Immun 26:, 1006–1016. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kerschensteiner M. , Gallmeier E. , Behrens L. , Leal V. V. , Misgeld T. , Klinkert W. E. , Kolbeck R. , Hoppe E. , Oropeza-Wekerle R. L. . & other authors ( 1999; ). Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation. ? J Exp Med 189:, 865–870. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kuwahara I. , Lillehoj E. P. , Lu W. , Singh I. S. , Isohama Y. , Miyata T. , Kim K. C. . ( 2006; ). Neutrophil elastase induces IL-8 gene transcription and protein release through p38/NF-κB activation via EGFR transactivation in a lung epithelial cell line. . Am J Physiol Lung Cell Mol Physiol 291:, L407–L416. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lee D. H. , Geyer E. , Flach A. C. , Jung K. , Gold R. , Flügel A. , Linker R. A. , Lühder F. . ( 2012; ). Central nervous system rather than immune cell-derived BDNF mediates axonal protective effects early in autoimmune demyelination. . Acta Neuropathol 123:, 247–258. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lewin G. R. , Barde Y. A. . ( 1996; ). Physiology of the neurotrophins. . Annu Rev Neurosci 19:, 289–317. [CrossRef] [PubMed]
    [Google Scholar]
  19. Lu C. H. , Chang W. N. , Chuang Y. C. , Chang H. W. . ( 1999; ). Gram-negative bacillary meningitis in adult post-neurosurgical patients. . Surg Neurol 52:, 438–443, discussion 443–444. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lu C. H. , Chang W. N. , Chang H. W. . ( 2002; ). Klebsiella meningitis in adults: clinical features, prognostic factors and therapeutic outcomes. . J Clin Neurosci 9:, 533–538. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mancebo J. , Domingo P. , Blanch L. , Coll P. , Net A. , Nolla J. . ( 1986; ). Post-neurosurgical and spontaneous gram-negative bacillary meningitis in adults. . Scand J Infect Dis 18:, 533–538. [CrossRef] [PubMed]
    [Google Scholar]
  22. Mangi R. J. , Quintiliani R. , Andriole V. T. . ( 1975; ). Gram-negative bacillary meningitis. . Am J Med 59:, 829–836. [CrossRef] [PubMed]
    [Google Scholar]
  23. McAfoose J. , Baune B. T. . ( 2009; ). Evidence for a cytokine model of cognitive function. . Neurosci Biobehav Rev 33:, 355–366. [CrossRef] [PubMed]
    [Google Scholar]
  24. Morichi S. , Kashiwagi Y. , Takekuma K. , Hoshika A. , Kawashima H. . ( 2013; ). Expressions of brain-derived neurotrophic factor (BDNF) in cerebrospinal fluid and plasma of children with meningitis and encephalitis/encephalopathy. . Int J Neurosci 123:, 17–23. [CrossRef] [PubMed]
    [Google Scholar]
  25. Mukaida N. . ( 2003; ). Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. . Am J Physiol Lung Cell Mol Physiol 284:, L566–L577.[PubMed] [CrossRef]
    [Google Scholar]
  26. Pfister H. W. , Scheld W. M. . ( 1997; ). Brain injury in bacterial meningitis: therapeutic implications. . Curr Opin Neurol 10:, 254–259. [CrossRef] [PubMed]
    [Google Scholar]
  27. Quevedo J. , Vianna M. , Zanatta M. S. , Roesler R. , Izquierdo I. , Jerusalinsky D. , Quillfeldt J. A. . ( 1997; ). Involvement of mechanisms dependent on NMDA receptors, nitric oxide and protein kinase A in the hippocampus but not in the caudate nucleus in memory. . Behav Pharmacol 8:, 713–717. [CrossRef] [PubMed]
    [Google Scholar]
  28. Rattiner L. M. , Davis M. , Ressler K. J. . ( 2005; ). Brain-derived neurotrophic factor in amygdala-dependent learning. . Neuroscientist 11:, 323–333. [CrossRef] [PubMed]
    [Google Scholar]
  29. Roesler R. , Schröder N. , Vianna M. R. , Quevedo J. , Bromberg E. , Kapczinski F. , Ferreira M. B. . ( 2003; ). Differential involvement of hippocampal and amygdalar NMDA receptors in contextual and aversive aspects of inhibitory avoidance memory in rats. . Brain Res 975:, 207–213. [CrossRef] [PubMed]
    [Google Scholar]
  30. Scheld W. M. , Koedel U. , Nathan B. , Pfister H. W. . ( 2002; ). Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. . J Infect Dis 186: (Suppl 2), S225–S233. [CrossRef] [PubMed]
    [Google Scholar]
  31. Schmand B. , de Bruin E. , de Gans J. , van de Beek D. . ( 2010; ). Cognitive functioning and quality of life nine years after bacterial meningitis. . J Infect 61:, 330–334. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sellner J. , Täuber M. G. , Leib S. L. . ( 2010; ). Pathogenesis and pathophysiology of bacterial CNS infections. . In Handbook of Clinical Neurology, vol. 96, pp. 1–16. Edited by Karen L. R. , Allan R. T. . . Amsterdam:: Elsevier;. [CrossRef]
    [Google Scholar]
  33. Tunkel A. R. , Scheld W. M. . ( 1993; ). Pathogenesis and pathophysiology of bacterial meningitis. . Clin Microbiol Rev 6:, 118–136.[PubMed]
    [Google Scholar]
  34. Vianna M. R. , Alonso M. , Viola H. , Quevedo J. , de Paris F. , Furman M. , de Stein M. L. , Medina J. H. , Izquierdo I. . ( 2000; ). Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat. . Learn Mem 7:, 333–340. [CrossRef] [PubMed]
    [Google Scholar]
  35. Wen L. L. , Chiu C. T. , Huang Y. N. , Chang C. F. , Wang J. Y. . ( 2007; ). Rapid glia expression and release of proinflammatory cytokines in experimental Klebsiella pneumoniae meningoencephalitis. . Exp Neurol 205:, 270–278. [CrossRef] [PubMed]
    [Google Scholar]
  36. Yirmiya R. , Goshen I. . ( 2011; ). Immune modulation of learning, memory, neural plasticity and neurogenesis. . Brain Behav Immun 25:, 181–213. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.063289-0
Loading
/content/journal/jmm/10.1099/jmm.0.063289-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error