1887
Preview this article:
Zoom in
Zoomout

Telavancin and daptomycin activity against meticillin-resistant strains after vancomycin-resistance selection , Page 1 of 1

| /docserver/preview/fulltext/jmm/62/7/1101_jmm060640-1.gif

There is no abstract available for this article.
Use the preview function to the left.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.060640-0
2013-07-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/7/1101.html?itemId=/content/journal/jmm/10.1099/jmm.0.060640-0&mimeType=html&fmt=ahah

References

  1. Cui L., Ma X., Sato K., Okuma K., Tenover F. C., Mamizuka E. M., Gemmell C. G., Kim M. N., Ploy M. C. et al. ( 2003;). Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. . J Clin Microbiol 41:, 5–14. [CrossRef][PubMed]
    [Google Scholar]
  2. Cui L., Lian J. Q., Neoh H. M., Reyes E., Hiramatsu K.. ( 2005;). DNA microarray-based identification of genes associated with glycopeptide resistance in Staphylococcus aureus. . Antimicrob Agents Chemother 49:, 3404–3413. [CrossRef][PubMed]
    [Google Scholar]
  3. Draghi D. C., Benton B. M., Krause K. M., Thornsberry C., Pillar C., Sahm D. F.. ( 2008;). Comparative surveillance study of telavancin activity against recently collected gram-positive clinical isolates from across the United States. . Antimicrob Agents Chemother 52:, 2383–2388. [CrossRef][PubMed]
    [Google Scholar]
  4. Gander S., Kinnaird A., Finch R.. ( 2005;). Telavancin: in vitro activity against staphylococci in a biofilm model. . J Antimicrob Chemother 56:, 337–343. [CrossRef][PubMed]
    [Google Scholar]
  5. Hobbs J. K., Miller K., O’Neill A. J., Chopra I.. ( 2008;). Consequences of daptomycin-mediated membrane damage in Staphylococcus aureus. . J Antimicrob Chemother 62:, 1003–1008. [CrossRef][PubMed]
    [Google Scholar]
  6. Jones R. N.. ( 2006;). Microbiological features of vancomycin in the 21st century: minimum inhibitory concentration creep, bactericidal/static activity, and applied breakpoints to predict clinical outcomes or detect resistant strains. . Clin Infect Dis 42: (Suppl 1), S13–S24. [CrossRef][PubMed]
    [Google Scholar]
  7. Jung D., Rozek A., Okon M., Hancock R. E.. ( 2004;). Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. . Chem Biol 11:, 949–957. [CrossRef][PubMed]
    [Google Scholar]
  8. Kanafani Z. A.. ( 2006;). Telavancin: a new lipoglycopeptide with multiple mechanisms of action. . Expert Rev Anti Infect Ther 4:, 743–749. [CrossRef][PubMed]
    [Google Scholar]
  9. Leuthner K. D., Cheung C. M., Rybak M. J.. ( 2006;). Comparative activity of the new lipoglycopeptide telavancin in the presence and absence of serum against 50 glycopeptide non-susceptible staphylococci and three vancomycin-resistant Staphylococcus aureus. . J Antimicrob Chemother 58:, 338–343. [CrossRef][PubMed]
    [Google Scholar]
  10. Liu C., Bayer A., Cosgrove S. E., Daum R. S., Fridkin S. K., Gorwitz R. J., Kaplan S. L., Karchmer A. W., Levine D. P. et al. ( 2011;). Clinical practice guidelines by the infectious diseases society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. . Clin Infect Dis 52:, e18–e55. [CrossRef][PubMed]
    [Google Scholar]
  11. Moubareck C., Meziane-Cherif D., Courvalin P., Périchon B.. ( 2009;). VanA-type Staphylococcus aureus strain VRSA-7 is partially dependent on vancomycin for growth. . Antimicrob Agents Chemother 53:, 3657–3663. [CrossRef][PubMed]
    [Google Scholar]
  12. Neoh H. M., Hori S., Komatsu M., Oguri T., Takeuchi F., Cui L., Hiramatsu K.. ( 2007;). Impact of reduced vancomycin susceptibility on the therapeutic outcome of MRSA bloodstream infections. . Ann Clin Microbiol Antimicrob 6:, 13. [CrossRef][PubMed]
    [Google Scholar]
  13. Pace J. L., Krause K., Johnston D., Debabov D., Wu T., Farrington L., Lane C., Higgins D. L., Christensen B. et al. ( 2003;). In vitro activity of TD-6424 against Staphylococcus aureus. . Antimicrob Agents Chemother 47:, 3602–3604. [CrossRef][PubMed]
    [Google Scholar]
  14. Peleg A. Y., Miyakis S., Ward D. V., Earl A. M., Rubio A., Cameron D. R., Pillai S., Moellering R. C. Jr, Eliopoulos G. M.. ( 2012;). Whole genome characterization of the mechanisms of daptomycin resistance in clinical and laboratory derived isolates of Staphylococcus aureus. . PLoS ONE 7:, e28316. [CrossRef][PubMed]
    [Google Scholar]
  15. Petrosillo N., Capone A., Di Bella S., Taglietti F.. ( 2010;). Management of antibiotic resistance in the intensive care unit setting. . Expert Rev Anti Infect Ther 8:, 289–302. [CrossRef][PubMed]
    [Google Scholar]
  16. Sakoulas G., Moise-Broder P. A., Schentag J., Forrest A., Moellering R. C. Jr, Eliopoulos G. M.. ( 2004;). Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. . J Clin Microbiol 42:, 2398–2402. [CrossRef][PubMed]
    [Google Scholar]
  17. van Hal S. J., Paterson D. L., Gosbell I. B.. ( 2011;). Emergence of daptomycin resistance following vancomycin-unresponsive Staphylococcus aureus bacteraemia in a daptomycin-naïve patient–a review of the literature. . Eur J Clin Microbiol Infect Dis 30:, 603–610. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.060640-0
Loading
/content/journal/jmm/10.1099/jmm.0.060640-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error