1887

Abstract

infection (CDI) is a major cause of morbidity and mortality among hospitalized patients and imposes a considerable financial burden on health service providers in both Europe and the USA. The incidence of CDI has dramatically increased in recent years, partly due to the emergence of a number of hypervirulent strains. The most commonly documented risk factors associated with CDIs are antibiotic usage leading to alterations of the gut microbiota, age >65 years and long-term hospital stay. Since standard therapies for antibiotic-associated diarrhoea and CDI have limited efficacy, there is now an urgent need for alternative therapeutics. In this review, we outline the current state of play with regard to the potential of gut-derived bacteriocins, probiotics and phage to act as antimicrobial agents against CDI in the human gut.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.058933-0
2013-09-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/9/1369.html?itemId=/content/journal/jmm/10.1099/jmm.0.058933-0&mimeType=html&fmt=ahah

References

  1. Aas J. , Gessert C. E. , Bakken J. S. . ( 2003; ). Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. . Clin Infect Dis 36:, 580–585. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alemayehu D. , Casey P. G. , McAuliffe O. , Guinane C. M. , Martin J. G. , Shanahan F. , Coffey A. , Ross R. P. , Hill C. . ( 2012; ). Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells.. MBio 3:, e00029–00012.[CrossRef]
    [Google Scholar]
  3. Arias C. A. , Murray B. E. . ( 2009; ). Antibiotic-resistant bugs in the 21st century–a clinical super-challenge. . N Engl J Med 360:, 439–443. [CrossRef] [PubMed]
    [Google Scholar]
  4. Baines S. D. , O’Connor R. , Freeman J. , Fawley W. N. , Harmanus C. , Mastrantonio P. , Kuijper E. J. , Wilcox M. H. . ( 2008; ). Emergence of reduced susceptibility to metronidazole in Clostridium difficile. . J Antimicrob Chemother 62:, 1046–1052. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bartlett J. G. . ( 2002; ). Antibiotic-associated diarrhea. . N Engl J Med 346:, 334–339. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bartoloni A. , Mantella A. , Goldstein B. P. , Dei R. , Benedetti M. , Sbaragli S. , Paradisi F. . ( 2004; ). In-vitro activity of nisin against clinical isolates of Clostridium difficile. . J Chemother 16:, 119–121.[PubMed] [CrossRef]
    [Google Scholar]
  7. Boakes S. , Ayala T. , Herman M. , Appleyard A. N. , Dawson M. J. , Cortés J. . ( 2012; ). Generation of an actagardine A variant library through saturation mutagenesis. . Appl Microbiol Biotechnol 95:, 1509–1517. [CrossRef] [PubMed]
    [Google Scholar]
  8. Borysowski J. , Lobocka M. , Międzybrodzki R. , Weber-Dabrowska B. , Górski A. . ( 2011; ). Potential of bacteriophages and their lysins in the treatment of MRSA: current status and future perspectives. . BioDrugs 25:, 347–355. [CrossRef] [PubMed]
    [Google Scholar]
  9. Brandl K. , Plitas G. , Mihu C. N. , Ubeda C. , Jia T. , Fleisher M. , Schnabl B. , DeMatteo R. P. , Pamer E. G. . ( 2008; ). Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. . Nature 455:, 804–807. [CrossRef] [PubMed]
    [Google Scholar]
  10. Brazier J. S. , Raybould R. , Patel B. , Duckworth G. , Pearson A. , Charlett A. , Duerden B. I. . HPA Regional Microbiology Network ( 2008; ). Distribution and antimicrobial susceptibility patterns of Clostridium difficile PCR ribotypes in English hospitals, 2007–08. . Euro Surveill 13: (41) 3.[PubMed]
    [Google Scholar]
  11. Brussow H. , Canchaya C. , Hardt W. . ( 2005; ). Phages and the evolution of bacterial pathogen: from genomic rearrangements to lysogenic conversion. . Microbiol Mol Biol Rev 68:, 560–1378. [CrossRef]
    [Google Scholar]
  12. Burke D. , Alemayehu D. , Rea M. C. , McAuliffe O. , Cooney C. J. , Hill C. , Ross R. P. . ( 2012; ). Cloning and expression of a biologically active endolysin from the Clostridium difficile bacteriophage φCD6356. . Abstract Poster Presentation 195. Viruses of Microbes II, 16–20 July 2012, Brussels, Belgium.
  13. Burrowes B. , Harper D. R. , Anderson J. , McConville M. , Enright M. C. . ( 2011; ). Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. . Expert Rev Anti Infect Ther 9:, 775–785. [CrossRef] [PubMed]
    [Google Scholar]
  14. Carlet J. . ( 2012; ). The gut is the epicentre of antibiotic resistance. . Antimicrob Resist Infect Control 1:, 39. [CrossRef] [PubMed]
    [Google Scholar]
  15. Citron D. M. , Tyrrell K. L. , Merriam C. V. , Goldstein E. J. . ( 2012; ). Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria. . Antimicrob Agents Chemother 56:, 2493–2503. [CrossRef] [PubMed]
    [Google Scholar]
  16. Coffey B. , Rivas L. , Duffy G. , Coffey A. , Ross R. P. , McAuliffe O. . ( 2011; ). Assessment of Escherichia coli O157:H7-specific bacteriophages e11/2 and e4/1c in model broth and hide environments. . Int J Food Microbiol 147:, 188–194. [CrossRef] [PubMed]
    [Google Scholar]
  17. Corr S. C. , Li Y. , Riedel C. U. , O’Toole P. W. , Hill C. , Gahan C. G. . ( 2007; ). Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. . Proc Natl Acad Sci U S A 104:, 7617–7621. [CrossRef] [PubMed]
    [Google Scholar]
  18. Corr S. C. , Hill C. , Gahan C. G. . ( 2009; ). Understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens. . Adv Food Nutr Res 56:, 1–15. [CrossRef] [PubMed]
    [Google Scholar]
  19. Cotter P. D. , Ross R. P. , Hill C. . ( 2013; ). Bacteriocins – a viable alternative to antibiotics?. Nat Rev Microbiol 11:, 95–105. [CrossRef] [PubMed]
    [Google Scholar]
  20. Davis C. D. , Milner J. A. . ( 2009; ). Gastrointestinal microflora, food components and colon cancer prevention. . J Nutr Biochem 20:, 743–752. [CrossRef] [PubMed]
    [Google Scholar]
  21. Debarbieux L. , Leduc D. , Maura D. , Morello E. , Criscuolo A. , Grossi O. , Balloy V. , Touqui L. . ( 2010; ). Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. . J Infect Dis 201:, 1096–1104. [CrossRef] [PubMed]
    [Google Scholar]
  22. Dobson A. , Cotter P. D. , Ross R. P. , Hill C. . ( 2012; ). Bacteriocin production: a probiotic trait?. Appl Environ Microbiol 78:, 1–6. [CrossRef] [PubMed]
    [Google Scholar]
  23. Fenton M. , Casey P. G. , Hill C. , Gahan C. G. , Ross R. P. , McAuliffe O. , O’Mahony J. , Maher F. , Coffey A. . ( 2010; ). The truncated phage lysin CHAP(k) eliminates Staphylococcus aureus in the nares of mice. . Bioeng Bugs 1:, 404–407. [CrossRef] [PubMed]
    [Google Scholar]
  24. Field D. , Quigley L. , O’Connor P. M. , Rea M. C. , Daly K. , Cotter P. D. , Hill C. , Ross R. P. . ( 2010; ). Studies with bioengineered Nisin peptides highlight the broad-spectrum potency of Nisin V. . Microb Biotechnol 3:, 473–486. [CrossRef] [PubMed]
    [Google Scholar]
  25. Filippov A. A. , Sergueev K. V. , He Y. , Huang X. Z. , Gnade B. T. , Mueller A. J. , Fernandez-Prada C. M. , Nikolich M. P. . ( 2012; ). Bacteriophage therapy of experimental bubonic plague in mice. . In Advances in Yersinia Research (Advances in Experimental Medicine and Biology vol. 954), pp 337–348. Edited by de Almeida A. M. P. , Leal N. C. . . New York:: Springer;. [CrossRef] [PubMed]
    [Google Scholar]
  26. Fischetti V. A. . ( 2008; ). Bacteriophage lysins as effective antibacterials. . Curr Opin Microbiol 11:, 393–400. [CrossRef] [PubMed]
    [Google Scholar]
  27. Fortier L. C. , Moineau S. . ( 2007; ). Morphological and genetic diversity of temperate phages in Clostridium difficile. . Appl Environ Microbiol 73:, 7358–7366. [CrossRef] [PubMed]
    [Google Scholar]
  28. Fouhy F. , Ross R. P. , Fitzgerald G. F. , Stanton C. , Cotter P. D. . ( 2012; ). Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. . Gut Microbes 3:, 203–220. [CrossRef] [PubMed]
    [Google Scholar]
  29. Freeman J. , Bauer M. P. , Baines S. D. , Corver J. , Fawley W. N. , Goorhuis B. , Kuijper E. J. , Wilcox M. H. . ( 2010; ). The changing epidemiology of Clostridium difficile infections. . Clin Microbiol Rev 23:, 529–549. [CrossRef] [PubMed]
    [Google Scholar]
  30. Gao X. W. , Mubasher M. , Fang C. Y. , Reifer C. , Miller L. E. . ( 2010; ). Dose–response efficacy of a proprietary probiotic formula of Lactobacillus acidophilus CL1285 and Lactobacillus casei LBC80R for antibiotic-associated diarrhea and Clostridium difficile-associated diarrhea prophylaxis in adult patients. . Am J Gastroenterol 105:, 1636–1641. [CrossRef] [PubMed]
    [Google Scholar]
  31. Ghantoji S. S. , Sail K. , Lairson D. R. , DuPont H. L. , Garey K. W. . ( 2010; ). Economic healthcare costs of Clostridium difficile infection: a systematic review. . J Hosp Infect 74:, 309–318. [CrossRef] [PubMed]
    [Google Scholar]
  32. Goh S. , Riley T. V. , Chang B. J. . ( 2005; ). Isolation and characterization of temperate bacteriophages of Clostridium difficile. . Appl Environ Microbiol 71:, 1079–1083. [CrossRef] [PubMed]
    [Google Scholar]
  33. Goh S. , Ong F. P. , Song P. K. , Rikey V. T. , Chang J. B. . ( 2007; ). The complete genome sequence of Clostridium difficile phage wC2 and comparisons to wCD119 and inducible prophages of CD630.. Microbiology 153:, 676–685. [CrossRef] [PubMed]
    [Google Scholar]
  34. Govind R. , Fralick J. A. , Rolfe R. D. . ( 2006; ). Genomic organization and molecular characterization of Clostridium difficile bacteriophage fCD119.. J Bacteriol 188:, 2568–2577. [CrossRef] [PubMed]
    [Google Scholar]
  35. Grehan M. J. , Borody T. J. , Leis S. M. , Campbell J. , Mitchell H. , Wettstein A. . ( 2010; ). Durable alteration of the colonic microbiota by the administration of donor fecal flora. . J Clin Gastroenterol 44:, 551–561. [CrossRef] [PubMed]
    [Google Scholar]
  36. Harper D. R. , Anderson J. , Enright M. C. . ( 2011; ). Phage therapy: delivering on the promise.. Therapeutic Delivery 2: (7), 935–947.[CrossRef]
    [Google Scholar]
  37. Hickson M. , D’Souza A. L. , Muthu N. , Rogers T. R. , Want S. , Rajkumar C. , Bulpitt C. J. . ( 2007; ). Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. . BMJ 335:, 80. [CrossRef] [PubMed]
    [Google Scholar]
  38. Horgan M. , O’Sullivan O. , Coffey A. , Fitzgerald G. F. , van Sinderen D. , McAuliffe O. , Ross R. P. . ( 2010; ). Genome analysis of the Clostridium difficile phage PhiCD6356, a temperate phage of the Siphoviridae family. . Gene 462:, 34–43. [CrossRef] [PubMed]
    [Google Scholar]
  39. Huang H. , Weintraub A. , Fang H. , Nord C. E. . ( 2009; ). Antimicrobial resistance in Clostridium difficile. . Int J Antimicrob Agents 34:, 516–522. [CrossRef] [PubMed]
    [Google Scholar]
  40. Johnson A. P. , Wilcox M. H. . ( 2012; ). Fidaxomicin: a new option for the treatment of Clostridium difficile infection. . J Antimicrob Chemother 67:, 2788–2792. [CrossRef] [PubMed]
    [Google Scholar]
  41. Johnson S. , Maziade P. J. , McFarland L. V. , Trick W. , Donskey C. , Currie B. , Low D. E. , Goldstein E. J. . ( 2012; ). Is primary prevention of Clostridium difficile infection possible with specific probiotics?. Int J Infect Dis 16:, e786–e792. [CrossRef] [PubMed]
    [Google Scholar]
  42. Lawrence S. J. , Korzenik J. R. , Mundy L. M. . ( 2005; ). Probiotics for recurrent Clostridium difficile disease. . J Med Microbiol 54:, 905–906. [CrossRef] [PubMed]
    [Google Scholar]
  43. Mayer M. J. , Narbad A. , Gasson M. J. . ( 2008; ). Molecular characterization of a Clostridium difficile bacteriophage and its cloned biologically active endolysin. . J Bacteriol 190:, 6734–6740. [CrossRef] [PubMed]
    [Google Scholar]
  44. Mayer M. J. , Garefalaki V. , Spoerl R. , Narbad A. , Meijers R. . ( 2011; ). Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range. . J Bacteriol 193:, 5477–5486. [CrossRef] [PubMed]
    [Google Scholar]
  45. McFarland L. . ( 2000; ). Normal flora: diversity and functions. . Microb Ecol Health Dis 12:, 193–207. [CrossRef]
    [Google Scholar]
  46. McFarland L. V. . ( 2009; ). Evidence-based review of probiotics for antibiotic-associated diarrhea and Clostridium difficile infections. . Anaerobe 15:, 274–280. [CrossRef] [PubMed]
    [Google Scholar]
  47. McFarland L. V. , Surawicz C. M. , Greenberg R. N. , Fekety R. , Elmer G. W. , Moyer K. A. , Melcher S. A. , Bowen K. E. , Cox J. L. . & other authors ( 1994; ). A randomized placebo-controlled trial of Saccharomyces boulardii in combination with standard antibiotics for Clostridium difficile disease. . JAMA 271:, 1913–1918. [CrossRef] [PubMed]
    [Google Scholar]
  48. Meader E. , Mayer M. J. , Gasson M. J. , Steverding D. , Carding S. R. , Narbad A. . ( 2010; ). Bacteriophage treatment significantly reduces viable Clostridium difficile and prevents toxin production in an in vitro model system. . Anaerobe 16:, 549–554. [CrossRef] [PubMed]
    [Google Scholar]
  49. Meessen-Pinard M. , Sekulovic O. , Fortier L. C. . ( 2012; ). Evidence of in vivo prophage induction during Clostridium difficile infection. . Appl Environ Microbiol 78:, 7662–7670. [CrossRef] [PubMed]
    [Google Scholar]
  50. Merabishvili M. , De Vos D. , Verbeken G. , Kropinski A. M. , Vandenheuvel D. , Lavigne R. , Wattiau P. , Mast J. , Ragimbeau C. . & other authors ( 2012; ). Selection and characterization of a candidate therapeutic bacteriophage that lyses the Escherichia coli O104:H4 strain from the 2011 outbreak in Germany. . PLoS ONE 7:, e52709. [CrossRef] [PubMed]
    [Google Scholar]
  51. Miller M. . ( 2009; ). The fascination with probiotics for Clostridium difficile infection: lack of evidence for prophylactic or therapeutic efficacy. . Anaerobe 15:, 281–284. [CrossRef] [PubMed]
    [Google Scholar]
  52. Muniesa M. , Hammerl J. A. , Hertwig S. , Appel B. , Brüssow H. . ( 2012; ). Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. . Appl Environ Microbiol 78:, 4065–4073. [CrossRef] [PubMed]
    [Google Scholar]
  53. Nale J. Y. , Shan J. , Hickenbotham P. T. , Fawley W. N. , Wilcox M. H. , Clokie M. R. . ( 2012; ). Diverse temperate bacteriophage carriage in Clostridium difficile 027 strains. . PLoS ONE 7:, e37263. [CrossRef] [PubMed]
    [Google Scholar]
  54. Pillai A. , Nelson R. . ( 2008; ). Probiotics for treatment of Clostridium difficile-associated colitis in adults. . Cochrane Database Syst Rev (1), CD004611.[PubMed]
    [Google Scholar]
  55. Pineiro M. , Stanton C. . ( 2007; ). Probiotic bacteria: legislative framework – requirements to evidence basis. . J Nutr 137: (Suppl 2), 850S–853S.[PubMed]
    [Google Scholar]
  56. Pochapin M. . ( 2000; ). The effect of probiotics on Clostridium difficile diarrhea. . Am J Gastroenterol 95: (Suppl), S11–S13. [CrossRef] [PubMed]
    [Google Scholar]
  57. Qin J. , Li R. , Raes J. , Arumugam M. , Burgdorf K. S. , Manichanh C. , Nielsen T. , Pons N. , Levenez F. . & other authors ( 2010; ). A human gut microbial gene catalogue established by metagenomic sequencing. . Nature 464:, 59–65. [CrossRef] [PubMed]
    [Google Scholar]
  58. Ramesh V. , Fralick J. A. , Rolfe D. . ( 1999; ). Prevention of Clostridium difficile-induced ileocecitis with bacteriophage. . Anaerobe 5:, 69–78. [CrossRef]
    [Google Scholar]
  59. Raya R. R. , Varey P. , Oot R. A. , Dyen M. R. , Callaway T. R. , Edrington T. S. , Kutter E. M. , Brabban A. D. . ( 2006; ). Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157:H7 levels in sheep. . Appl Environ Microbiol 72:, 6405–6410. [CrossRef] [PubMed]
    [Google Scholar]
  60. Rea M. C. , Clayton E. , O’Connor P. M. , Shanahan F. , Kiely B. , Ross R. P. , Hill C. . ( 2007; ). Antimicrobial activity of lacticin 3147 against clinical Clostridium difficile strains. . J Med Microbiol 56:, 940–946. [CrossRef] [PubMed]
    [Google Scholar]
  61. Rea M. C. , Sit C. S. , Clayton E. , O’Connor P. M. , Whittal R. M. , Zheng J. , Vederas J. C. , Ross R. P. , Hill C. . ( 2010; ). Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. . Proc Natl Acad Sci U S A 107:, 9352–9357. [CrossRef] [PubMed]
    [Google Scholar]
  62. Rea M. C. , Cotter P. D. , Hill C. , Ross R. P. . ( 2011a; ). Classification of bacteriocins from Gram positive bacteria. . In Prokaryotic Antimicrobial Peptides. From Genes to Applications, pp. 29–53. Edited by Drider D. , Rebuffat. S. . New York:: Springer;. [CrossRef]
    [Google Scholar]
  63. Rea M. C. , Dobson A. , O’Sullivan O. , Crispie F. , Fouhy F. , Cotter P. D. , Shanahan F. , Kiely B. , Hill C. , Ross R. P. . ( 2011b; ). Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. . Proc Natl Acad Sci U S A 108: (Suppl 1), 4639–4644. [CrossRef] [PubMed]
    [Google Scholar]
  64. Rea M. C. , O’Sullivan O. , Shanahan F. , O’Toole P. W. , Stanton C. , Ross R. P. , Hill C. . ( 2012; ). Clostridium difficile carriage in elderly subjects and associated changes in the intestinal microbiota. . J Clin Microbiol 50:, 867–875. [CrossRef] [PubMed]
    [Google Scholar]
  65. Revathi G. , Fralick J. A. , Rolfe R. D. . ( 2011; ). In vivo lysogenization of a Clostridium difficile bacteriophage φCD119. . Anaerobe 17:, 125–129. [CrossRef] [PubMed]
    [Google Scholar]
  66. Riley M. A. , Robinson S. M. , Roy C. M. , Dennis M. , Liu V. , Dorit R. L. . ( 2012; ). Resistance is futile: the bacteriocin model for addressing the antibiotic resistance challenge. . Biochem Soc Trans 40:, 1438–1442. [CrossRef] [PubMed]
    [Google Scholar]
  67. Rohlke F. , Surawicz C. M. , Stollman N. . ( 2010; ). Fecal flora reconstitution for recurrent Clostridium difficile infection: results and methodology. . J Clin Gastroenterol 44:, 567–570. [CrossRef] [PubMed]
    [Google Scholar]
  68. Rozema E. A. , Stephens T. P. , Bach S. J. , Okine E. K. , Johnson R. P. , Stanford K. , McAllister T. A. . ( 2009; ). Oral and rectal administration of bacteriophages for control of Escherichia coli O157:H7 in feedlot cattle. . J Food Prot 72:, 241–250.[PubMed] [CrossRef]
    [Google Scholar]
  69. Rupnik M. , Wilcox M. H. , Gerding D. N. . ( 2009; ). Clostridium difficile infection: new developments in epidemiology and pathogenesis. . Nat Rev Microbiol 7:, 526–536. [CrossRef] [PubMed]
    [Google Scholar]
  70. Ryan J. , Murphy C. , Twomey C. , Paul Ross R. , Rea M. C. , MacSharry J. , Sheil B. , Shanahan F. . ( 2010; ). Asymptomatic carriage of Clostridium difficile in an Irish continuing care institution for the elderly: prevalence and characteristics. . Ir J Med Sci 179:, 245–250. [CrossRef] [PubMed]
    [Google Scholar]
  71. Saussereau E. , Debarbieux L. . ( 2012; ). Bacteriophages in the experimental treatment of Pseudomonas aeruginosa infections in mice. . Adv Virus Res 83:, 123–141. [CrossRef] [PubMed]
    [Google Scholar]
  72. Scanlan P. D. , Shanahan F. , O’Mahony C. , Marchesi J. R. . ( 2006; ). Culture-independent analyses of temporal variation of the dominant fecal microbiota and targeted bacterial subgroups in Crohn’s disease. . J Clin Microbiol 44:, 3980–3988. [CrossRef] [PubMed]
    [Google Scholar]
  73. Sebaihia M. , Wren B. W. , Mullany P. , Fairweather N. F. , Minton N. . & other authors ( 2006; ). The multidrug-resistant human pathogen Clostridium difficile has a high mobile, mosaic genome. . Nat Genet 38:, 779–786. [CrossRef] [PubMed]
    [Google Scholar]
  74. Sekulovic O. , Meessen-Pinard M. , Fortier L. C. . ( 2011; ). Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. . J Bacteriol 193:, 2726–2734. [CrossRef] [PubMed]
    [Google Scholar]
  75. Shan J. , Patel K. V. , Hickenbotham P. T. , Nale J. Y. , Hargreaves K. R. , Clokie M. R. . ( 2012; ). Prophage carriage and diversity within clinically relevant strains of Clostridium difficile. . Appl Environ Microbiol 78:, 6027–6034. [CrossRef] [PubMed]
    [Google Scholar]
  76. Shanahan F. . ( 2011; ). The colonic microflora and probiotic therapy in health and disease. . Curr Opin Gastroenterol 27:, 61–65. [CrossRef] [PubMed]
    [Google Scholar]
  77. Surawicz C. M. , McFarland L. V. , Greenberg R. N. , Rubin M. , Fekety R. , Mulligan M. E. , Garcia R. J. , Brandmarker S. , Bowen K. . & other authors ( 2000; ). The search for a better treatment for recurrent Clostridium difficile disease: use of high-dose vancomycin combined with Saccharomyces boulardii. . Clin Infect Dis 31:, 1012–1017. [CrossRef] [PubMed]
    [Google Scholar]
  78. Wall R. , Marques T. M. , O’Sullivan O. , Ross R. P. , Shanahan F. , Quigley E. M. , Dinan T. G. , Kiely B. , Fitzgerald G. F. . & other authors ( 2012; ). Contrasting effects of Bifidobacterium breve NCIMB 702258 and Bifidobacterium breve DPC 6330 on the composition of murine brain fatty acids and gut microbiota. . Am J Clin Nutr 95:, 1278–1287. [CrossRef] [PubMed]
    [Google Scholar]
  79. Warren C. A. , Guerrant R. L. . ( 2011; ). Pathogenic C difficile is here (and everywhere) to stay. . Lancet 377:, 8–9. [CrossRef] [PubMed]
    [Google Scholar]
  80. Wiegand P. N. , Nathwani D. , Wilcox M. H. , Stephens J. , Shelbaya A. , Haider S. . ( 2012; ). Clinical and economic burden of Clostridium difficile infection in Europe: a systematic review of healthcare-facility-acquired infection. . J Hosp Infect 81:, 1–14. [CrossRef] [PubMed]
    [Google Scholar]
  81. Wlodarska M. , Willing B. , Keeney K. M. , Menendez A. , Bergstrom K. S. , Gill N. , Russell S. L. , Vallance B. A. , Finlay B. B. . ( 2011; ). Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. . Infect Immun 79:, 1536–1545. [CrossRef] [PubMed]
    [Google Scholar]
  82. Wright A. , Hawkins C. H. , Anggård E. E. , Harper D. R. . ( 2009; ). A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. . Clin Otolaryngol 34:, 349–357. [CrossRef] [PubMed]
    [Google Scholar]
  83. Wullt M. , Hagslätt M. L. , Odenholt I. . ( 2003; ). Lactobacillus plantarum 299v for the treatment of recurrent Clostridium difficile-associated diarrhoea: a double-blind, placebo-controlled trial. . Scand J Infect Dis 35:, 365–367. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.058933-0
Loading
/content/journal/jmm/10.1099/jmm.0.058933-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error