1887

Abstract

The region of the phage ϕCD27 was identified, located immediately downstream of the putative recombinase. The phage could integrate into two specific sites () in the genome, one of which was in an open reading frame encoding a putative ATPase of an ABC transporter and the other in an open reading frame encoding a putative ATPase of the flagella protein export apparatus. The prophage was capable of excision and formation of a circular molecule and phages were spontaneously released at a low frequency during growth. Infection and lysogeny of a strain previously shown to be sensitive to ϕCD27 were demonstrated, leading to a reduction in toxin production. Finally, a putative repressor was identified which is likely to be involved in maintaining lysogeny in these strains.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.058651-0
2013-09-01
2024-11-08
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/9/1439.html?itemId=/content/journal/jmm/10.1099/jmm.0.058651-0&mimeType=html&fmt=ahah

References

  1. Bishai W. R., Murphy J. R. 1988 The Bacteriophages New York: Plenum Press;
    [Google Scholar]
  2. Brennan R. G., Matthews B. W. 1989; The helix-turn-helix DNA binding motif. J Biol Chem 264:1903–1906[PubMed]
    [Google Scholar]
  3. Brouwer M. S., Warburton P. J., Roberts A. P., Mullany P., Allan E. 2011; Genetic organisation, mobility and predicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium difficile.. PLoS ONE 6:e23014 [View Article][PubMed]
    [Google Scholar]
  4. Chen H. J., Tsai J. C., Hung W. C., Tseng S. P., Hsueh P. R., Teng L. J. 2011; Identification of fusB-mediated fusidic acid resistance islands in Staphylococcus epidermidis isolates. Antimicrob Agents Chemother 55:5842–5849 [View Article][PubMed]
    [Google Scholar]
  5. Eklund M. W., Poysky F. T., Reed S. M., Smith C. A. 1971; Bacteriophage and the toxigenicity of Clostridium botulinum type C. Science 172:480–482 [View Article][PubMed]
    [Google Scholar]
  6. Goh S., Chang B. J., Riley T. V. 2005; Effect of phage infection on toxin production by Clostridium difficile.. J Med Microbiol 54:129–135 [View Article][PubMed]
    [Google Scholar]
  7. Govind R., Vediyappan G., Rolfe R. D., Dupuy B., Fralick J. A. 2009; Bacteriophage-mediated toxin gene regulation in Clostridium difficile.. J Virol 83:12037–12045 [View Article][PubMed]
    [Google Scholar]
  8. Kutter E., Sulakvelidze A. 2005 Bacteriophages: Biology and Applications Boca Raton: CRC Press;
    [Google Scholar]
  9. Lo Vecchio A., Zacur G. M. 2012; Clostridium difficile infection: an update on epidemiology, risk factors, and therapeutic options. Curr Opin Gastroenterol 28:1–9 [View Article][PubMed]
    [Google Scholar]
  10. Mayer M. J., Narbad A., Gasson M. J. 2008; Molecular characterization of a Clostridium difficile bacteriophage and its cloned biologically active endolysin. J Bacteriol 190:6734–6740 [View Article][PubMed]
    [Google Scholar]
  11. Meader E., Mayer M. J., Gasson M. J., Steverding D., Carding S. R., Narbad A. 2010; Bacteriophage treatment significantly reduces viable Clostridium difficile and prevents toxin production in an in vitro model system. Anaerobe 16:549–554 [View Article][PubMed]
    [Google Scholar]
  12. Meessen-Pinard M., Sekulovic O., Fortier L. C. 2012; Evidence of in vivo prophage induction during Clostridium difficile infection. Appl Environ Microbiol 78:7662–7670 [View Article][PubMed]
    [Google Scholar]
  13. Muyzer G., de Waal E. C., Uitterlinden A. G. 1993; Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700[PubMed]
    [Google Scholar]
  14. Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeño-Tárraga A. M. other authors 2006; The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786 [View Article][PubMed]
    [Google Scholar]
  15. Sell T. L., Schaberg D. R., Fekety F. R. 1983; Bacteriophage and bacteriocin typing scheme for Clostridium difficile.. J Clin Microbiol 17:1148–1152[PubMed]
    [Google Scholar]
  16. Stabler R. A., He M., Dawson L., Martin M., Valiente E., Corton C., Lawley T. D., Sebaihia M., Quail M. A. other authors 2009; Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 10:R102 [View Article][PubMed]
    [Google Scholar]
  17. Tan K. S., Wee B. Y., Song K. P. 2001; Evidence for holin function of tcdE gene in the pathogenicity of Clostridium difficile.. J Med Microbiol 50:613–619[PubMed]
    [Google Scholar]
/content/journal/jmm/10.1099/jmm.0.058651-0
Loading
/content/journal/jmm/10.1099/jmm.0.058651-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error