1887

Abstract

To determine the value of gene markers for surveillance and to assess the genetic stability of potential acellular pertussis vaccine components, the sequence variation in ten virulence-related genes of was investigated in strains isolated in the UK between 1920 and 2002. These genes encode: pertactin (); pertussis toxin subunits S1 () and S3 (); tracheal colonization factor (); bordetella autotransporter protein C (); bordetella resistance to killing protein (); fimbrial antigen 2 (); outer-membrane protein Q (); virulence-activated gene 8 () and adenylate cyclase toxin (). The encoded proteins are either components of current acellular vaccines (ACVs), or potential virulence markers for . Three strains used in the pertussis UK whole-cell vaccine (WCV), strain Tohama-I used for production of ACV components and the type strain of (18323) were also analysed. Several novel alleles were found. The UK isolates were assigned multi-locus sequence types (MLSTs) according to a previously described scheme for based on three of these genes (, and ). Compared with isolates from other countries, the UK clinical strains showed a distinct distribution of MLSTs. Apart from one strain that was MLST-3, all other recent isolates (2000–2002) were identified as MLST-5. These isolates differed from the three WCV strains, which were MLST-2 or MLST-3, the Tohama-I strain (MLST-2) and the type strain of (MLST-9). MLST-3 and MLST-5 differ only by a single synonymous mutation, but this method does indicate that currently circulating strains of are not identical to the vaccine types, and they may differ in other important characteristics. Two new MLSTs were identified amongst historical UK isolates. Sequence-based typing offers a convenient method of analysing and comparing populations of from different time periods and from different countries. The variation exhibited by and suggests that they could be useful, additional epidemiological markers in such a typing scheme.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05515-0
2004-05-01
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/5/JM530502.html?itemId=/content/journal/jmm/10.1099/jmm.0.05515-0&mimeType=html&fmt=ahah

References

  1. Betsou, F., Sebo, P. & Guiso, N. ( 1995a;). The C-terminal domain is essential for protective activity of the Bordetella pertussis adenylate cyclase-haemolysin. Infect Immun 63, 3309–3315.
    [Google Scholar]
  2. Betsou, F., Sismeiro, O., Danchin, A. & Guiso, N. ( 1995b;). Cloning and sequence of the Bordetella bronchiseptica adenylate cyclase-hemolysin-encoding gene: comparison with the Bordetella pertussis gene. Gene 162, 165–166.[CrossRef]
    [Google Scholar]
  3. Blackburn, P. ( 2000;). Characterisation of the virulence-related, outer-membrane proteins of Bordetella pertussis. PhD thesis, University of Glasgow, UK.
  4. Boursaux-Eude, C., Thiberge, S., Carletti, G. & Guiso, N. ( 1999;). Intranasal murine model of Bordetella pertussis infection.II. Sequence variation and protection induced by a tricomponent acellular vaccine. Vaccine 17, 2651–2660.[CrossRef]
    [Google Scholar]
  5. Campins-Martí, M., Cheng, H. K., Forsyth, K. & 8 other authors ( 2001;). Recommendations are needed for adolescent and adult pertussis immunisation: rationale and strategies for consideration. Vaccine 20, 641–646.[CrossRef]
    [Google Scholar]
  6. Cassiday, P., Sanden, G., Heuvelman, K., Mooi, F., Bisgard, K. M. & Popovic, T. ( 2000;). Polymorphism in Bordetella pertussis pertactin and pertussis toxin virulence factors in the United States, 1935–1999. J Infect Dis 182, 1402–1408.[CrossRef]
    [Google Scholar]
  7. Crowcroft, N. S., Booy, R., Harrison, T. & 8 other authors ( 2003;). Severe and unrecognised: pertussis in UK infants. Arch Dis Child 88, 802–806.[CrossRef]
    [Google Scholar]
  8. Finn, T. M. & Stevens, L. A. ( 1995;). Tracheal colonization factor: a Bordetella pertussis secreted virulence determinant. Mol Microbiol 16, 625–634.[CrossRef]
    [Google Scholar]
  9. Fry, N. K., Neal, S., Harrison, T. G., Miller, E., Matthews, R. & George, R. C. ( 2001;). Genotypic variation in the Bordetella pertussis virulence factors pertactin and pertussis toxin in historical and recent clinical isolates in the United Kingdom. Infect Immun 69, 5520–5528.[CrossRef]
    [Google Scholar]
  10. Gaia, V., Fry, N. K., Harrison, T. G. & Peduzzi, R. ( 2003;). Sequence-based typing of Legionella pneumophila serogroup 1 offers the potential for true portability in legionellosis outbreak investigation. J Clin Microbiol 41, 2932–2939.[CrossRef]
    [Google Scholar]
  11. Gerlach, G., von Wintzingerode, F., Middendorf, B. & Gross, R. ( 2001;). Evolutionary trends in the genus Bordetella. Microbes Infect 3, 61–72.[CrossRef]
    [Google Scholar]
  12. Glaser, P., Ladant, D., Sezer, O., Pichot, F., Ullmann, A. & Danchin, A. ( 1988;). The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: cloning and expression in Escherichia coli. Mol Microbiol 2, 19–30.[CrossRef]
    [Google Scholar]
  13. Gzyl, A., Augustynowicz, E., van Loo, I. & Ślusarczyk, J. ( 2002;). Temporal nucleotide changes in pertactin and pertussis toxin genes in Bordetella pertussis strains isolated from clinical cases in Poland. Vaccine 20, 299–303.
    [Google Scholar]
  14. Henderson, I. R. & Nataro, J. P. ( 2001;). Virulence functions of autotransporter proteins. Infect Immun 69, 1231–1243.[CrossRef]
    [Google Scholar]
  15. Hormozi, K., Parton, R. & Coote, J. ( 1999;). Adjuvant and protective properties of native and recombinant Bordetella pertussis adenylate cyclase toxin preparations in mice. FEMS Immunol Med Microbiol 23, 273–282.[CrossRef]
    [Google Scholar]
  16. Ladant, D. & Ullmann, A. ( 1999;). Bordetella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol 7, 172–176.[CrossRef]
    [Google Scholar]
  17. Maiden, M. C., Suker, J., McKenna, A. J., Bygraves, J. A. & Feavers, I. M. ( 1991;). Comparison of the class 1 outer membrane proteins of eight serological reference strains of Neisseria meningitidis. Mol Microbiol 5, 727–736.[CrossRef]
    [Google Scholar]
  18. Maiden, M. C., Bygraves, J. A., Feil, E. & 10 other authors ( 1998;). Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95, 3140–3145.[CrossRef]
    [Google Scholar]
  19. Maslow, J. N., Mulligan, M. E. & Arbeit, R. D. ( 1993;). Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin Infect Dis 17, 153–164.[CrossRef]
    [Google Scholar]
  20. Mooi, F. R., van Oirschot, H., Heuvelman, K., van der Heide, H. G. J., Gaastra, W. & Willems, R. J. L. ( 1998;). Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution. Infect Immun 66, 670–675.
    [Google Scholar]
  21. Mooi, F. R., He, Q., van Oirschot, H. & Mertsola, J. ( 1999;). Variation in the Bordetella pertussis virulence factors pertussis toxin and pertactin in vaccine strains and clinical isolates in Finland. Infect Immun 67, 3133–3134.
    [Google Scholar]
  22. Mooi, F. R., Hallander, H., Wirsing von König, C., Hoet, B. & Guiso, N. ( 2000;). Epidemiological typing of Bordetella pertussis isolates: recommendations for a standard methodology. Eur J Clin Microbiol Infect Dis 19, 174–181.[CrossRef]
    [Google Scholar]
  23. Musser, J. M., Hewlett, E. L., Peppler, M. S. & Selander, R. K. ( 1986;). Genetic diversity and relationships in populations of Bordetella spp. J Bacteriol 166, 230–237.
    [Google Scholar]
  24. Oliveira, D. C., Tomasz, A. & de Lencastre, H. ( 2001;). The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus: identification of two ancestral genetic backgrounds and the associated mec elements. Microb Drug Resist 7, 349–361.[CrossRef]
    [Google Scholar]
  25. Parkhill, J., Sebaihia, M., Preston, A. & 50 other authors ( 2003;). Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet 35, 32–40.[CrossRef]
    [Google Scholar]
  26. Peppler, M. S., Kuny, S., Nevesinjac, A., Rogers, C., de Moissac, Y. R., Knowles, K., Lorange, M., De Serres, G. & Talbot, J. A. ( 2003;). Strain variation among Bordetella pertussis isolates from Quebec and Alberta provinces of Canada from 1985 to 1994. J Clin Microbiol 41, 3344–3347.[CrossRef]
    [Google Scholar]
  27. Ronaghi, M., Uhlen, M. & Nyren, P. ( 1998;). A sequencing method based on real-time pyrophosphate. Science 281, 363–365.[CrossRef]
    [Google Scholar]
  28. Spratt, B. G. ( 1999;). Multilocus sequence typing: molecular typing of bacterial pathogens in an era of rapid DNA sequencing and the Internet. Curr Opin Microbiol 2, 312–316.[CrossRef]
    [Google Scholar]
  29. Therre, H. & Baron, S. ( 2000;). Pertussis immunisation in Europe – the situation in late 1999. Euro Surveill 5, 6–10.
    [Google Scholar]
  30. van Buynder, P. G., Owen, D., Vurdien, J. E., Andrews, N. J., Matthews, R. C. & Miller, E. ( 1999;). Bordetella pertussis surveillance in England and Wales: 1995–7. Epidemiol Infect 123, 403–411.[CrossRef]
    [Google Scholar]
  31. van Loo, I. H. M., Heuvelman, K. J., King, A. J. & Mooi, F. R. ( 2002;). Multilocus sequence typing of Bordetella pertussis based on surface protein genes. J Clin Microbiol 40, 1994–2001.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05515-0
Loading
/content/journal/jmm/10.1099/jmm.0.05515-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error