1887

Abstract

Members of the complex are Gram-negative β-proteobacteria that are classified into nine genomic species or genomovars. Some representatives of this group of bacteria, such as (genomovar II) and (genomovar III), are considered to be dangerous pathogens for cystic fibrosis (CF) patients because of their capacity to colonize CF lungs. The gene, which encodes the peptidoglycan-associated outer-membrane lipoprotein (PAL), was detected in the genome of sp. LB 400 by a similarity search that was based on the sequence of the PAL, OprL. Primers that could amplify part of from LMG 13010 were designed. This PCR fragment was used as a probe for screening of a genomic bank, allowing cloning of the complete gene. The complete gene could be PCR-amplified from DNA from all genomovars. The sequences of these genes showed a high degree of conservation (> 95 %) among different species of the complex. OpcL protein that was purified from LMG 13010 was used to generate mouse polyclonal antisera against OpcL. The OpcL protein could be produced in and detected in outer-membrane fractions by Western blot. cells were labelled by immunofluorescence staining using antibodies against OpcL, but only after treatment with EDTA and SDS. The gene could be amplified directly from the sputa of 15 CF patients who were known to be colonized by ; sequence data derived from the amplicons identified the colonizing strains as (genomovar III, = 14) and ( = 1).

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05504-0
2004-05-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/5/JM530506.html?itemId=/content/journal/jmm/10.1099/jmm.0.05504-0&mimeType=html&fmt=ahah

References

  1. Bauernfeind A., Roller C., Meyer D., Jungwirth R., Schneider I. 1998; Molecular procedure for rapid detection of Burkholderia mallei and Burkholderia pseudomallei . J Clin Microbiol 36:2737–2741
    [Google Scholar]
  2. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . J Mol Biol 41:459–472 [CrossRef]
    [Google Scholar]
  3. Burkholder W. H. 1950; Sour skin, a bacterial rot of onion bulbs. Phytopathology 40:115–117
    [Google Scholar]
  4. Campbell P. W. III, Phillips J. A. III, Heidecker G. J., Krishnamani M. R., Zahorchak R., Stull T. L. 1995; Detection of Pseudomonas ( Burkholderia ) cepacia using PCR. Pediatr Pulmonol 20:44–49 [CrossRef]
    [Google Scholar]
  5. Cascales E., Bernadac A., Gavioli M., Lazzaroni J.-C., Lloubes R. 2002; Pal lipoprotein of Escherichia coli plays a major role in outer membrane integrity. J Bacteriol 184:754–759 [CrossRef]
    [Google Scholar]
  6. Chen R., Henning U. 1987; Nucleotide sequence of the gene for the peptidoglycan-associated lipoprotein of Escherichia coli K12. Eur J Biochem 163:73–77 [CrossRef]
    [Google Scholar]
  7. Clode F. E., Kaufmann M. E., Malnick H., Pitt T. L. 2000; Distribution of genes encoding putative transmissibility factors among epidemic and nonepidemic strains of Burkholderia cepacia from cystic fibrosis patients in the United Kingdom. J Clin Microbiol 38:1763–1766
    [Google Scholar]
  8. Coenye T., Mahenthiralingam E., Henry D., LiPuma J. J., Laevens S., Gillis M., Speert D. P., Vandamme P. 2001; Burkholderia ambifaria sp.nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. Int J Syst Evol Microbiol 51:1481–1490
    [Google Scholar]
  9. Cornelis P., Bouia A., Belarbi A., Guyonvarch A., Kammerer B., Hannaert V., Hubert J. C. 1989; Cloning and analysis of the gene for the major outer membrane lipoprotein from Pseudomonas aeruginosa . Mol Microbiol 3:421–428 [CrossRef]
    [Google Scholar]
  10. Cunha M. V., Leitão J. H., Mahenthiralingam E., Vandamme P., Lito L., Barreto C., Salgado M. J., Sá-Correia I. 2003; Molecular analysis of Burkholderia cepacia complex isolates from a Portuguese cystic fibrosis center: a 7-year study. J Clin Microbiol 41:4113–4120 [CrossRef]
    [Google Scholar]
  11. Deich R. A., Metcalf B. J., Finn C. W., Farley J. E., Green B. A. 1988; Cloning of genes encoding a 15,000-Dalton peptidoglycan-associated outer membrane lipoprotein and an antigenically related 15,000-Dalton protein from Haemophilus influenzae . J Bacteriol 170:489–498
    [Google Scholar]
  12. De Vos D., Lim A. Jr, De Vos P., Sarniguet A., Kersters K., Cornelis P. 1993; Detection of the outer membrane lipoprotein I and its gene in fluorescent and non-fluorescent pseudomonads: implications for taxonomy and diagnosis. J Gen Microbiol 139:2215–2223 [CrossRef]
    [Google Scholar]
  13. De Vos D., Lim A. Jr, Pirnay J.-P., Struelens M., Vandenvelde C., Duinslaeger L., Vanderkelen A., Cornelis P. 1997; Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes,oprI and oprL . J Clin Microbiol 35:1295–1299
    [Google Scholar]
  14. De Vos D., Bouton C., Sarniguet A., De Vos P., Vauterin M., Cornelis P. 1998; Sequence diversity of the oprI gene, coding for major outer membrane lipoprotein I, among rRNA group I pseudomonads. J Bacteriol 180:6551–6556
    [Google Scholar]
  15. Filip C., Fletcher G., Wulff J. L., Earhart C. F. 1973; Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol 115:717–722
    [Google Scholar]
  16. Gillis M., Van T. V., Bardin R. & 7 other authors; 1995; Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp.nov. for N2-fixing isolates from rice in Vietnam. Int J Syst Bacteriol 45:274–289 [CrossRef]
    [Google Scholar]
  17. Goldstein R., Sun L., Jiang R.-Z., Sajjan U., Forstner J. F., Campanelli C. 1995; Structurally variant classes of pilus appendage fibers coexpressed from Burkholderia ( Pseudomonas ) cepacia . J Bacteriol 177:1039–1052
    [Google Scholar]
  18. Govan J. R. W., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574
    [Google Scholar]
  19. Henry D. A., Mahenthiralingam E., Vandamme P., Coenye T., Speert D. P. 2001; Phenotypic methods for determining genomovar status of the Burkholderia cepacia complex. J Clin Microbiol 39:1073–1078 [CrossRef]
    [Google Scholar]
  20. Lim A. Jr, De Vos D., Brauns M., Mossialos D., Gaballa A., Qing D., Cornelis P. 1997; Molecular and immunological characterization of OprL, the 18 kDa outer-membrane peptidoglycan-associated lipoprotein (PAL) of Pseudomonas aeruginosa . Microbiology 143:1709–1716 [CrossRef]
    [Google Scholar]
  21. LiPuma J. J., Dulaney B. J., McMenamin J. D., Whitby P. W., Stull T. L., Coenye T., Vandamme P. 1999; Development of rRNA-based PCR assays for identification of Burkholderia cepacia complex isolates recovered from cystic fibrosis patients. J Clin Microbiol 37:3167–3170
    [Google Scholar]
  22. LiPuma J. J., Spilker T., Gill L. H., Campbell P. W. III, Liu L., Mahenthiralingam E. 2001; Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 164:92–96 [CrossRef]
    [Google Scholar]
  23. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R. W., Taylor P., Vandamme P. 2000a; Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38:910–913
    [Google Scholar]
  24. Mahenthiralingam E., Bischof J., Byrne S. K., Radomski C., Davies J. E., Av-Gay J., Vandamme P. 2000b; DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis , Burkholderia multivorans , Burkholderia stabilis , and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38:3165–3173
    [Google Scholar]
  25. Mahenthiralingam E., Baldwin A., Vandamme P. 2002; Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol 51:533–538
    [Google Scholar]
  26. McDowell A., Mahenthiralingam E., Moon J. E. & 8 other authors; 2001; PCR-based detection and identification of Burkholderia cepacia complex pathogens in sputum from cystic fibrosis patients. J Clin Microbiol 39:4247–4255 [CrossRef]
    [Google Scholar]
  27. Nelson M. B., Apicella M. A., Murphy T. F., Vankeulen H., Spotila L. D., Rekosh D. 1988; Cloning and sequencing of Haemophilus influenzae outer membrane protein P6. Infect Immun 56:128–134
    [Google Scholar]
  28. Pirnay J.-P., De Vos D., Duinslaeger L., Reper P., Vandenvelde C., Cornelis P., Vanderkelen A. 2000; Quantitation of Pseudomonas aeruginosa in wound biopsy samples: from bacterial culture to rapid ‘real-time’ polymerase chain reaction. Crit Care 4:255–261 [CrossRef]
    [Google Scholar]
  29. Pirnay J.-P., De Vos D., Cochez C., Bilocq F., Vanderkelen A., Zizi M., Ghysels B., Cornelis P. 2002; Pseudomonas aeruginosa displays an epidemic population structure. Environ Microbiol 4:898–911 [CrossRef]
    [Google Scholar]
  30. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  31. Rodríguez-Herva J. J., Ramos-González M.-J., Ramos J. L. 1996; The Pseudomonas putida peptidoglycan-associated outer membrane lipoprotein is involved in maintenance of the integrity of the cell envelope. J Bacteriol 178:1699–1706
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  33. Segonds C., Heulin T., Marty N., Chabanon G. 1999; Differentiation of Burkholderia species by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene and application to cystic fibrosis isolates. J Clin Microbiol 37:2201–2208
    [Google Scholar]
  34. Speert D. P., Henry D., Vandamme P., Corey M., Mahenthiralingam E. 2002; Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 8:181–187 [CrossRef]
    [Google Scholar]
  35. Tibor A., Weynants V., Denoel P., Lichtfouse B., De Bolle X., Saman E., Limet J. N., Letesson J.-J. 1994; Molecular cloning, nucleotide sequence, and occurrence of a 16.5-kilodalton outer membrane protein of Brucella abortus with similarity to PAL lipoproteins. Infect Immun 62:3633–3639
    [Google Scholar]
  36. Vandamme P., Holmes B., Vancanneyt M. & 8 other authors; 1997; Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp.nov. Int J Syst Bacteriol 47:1188–1200 [CrossRef]
    [Google Scholar]
  37. Vandamme P., Mahenthiralingam E., Holmes B., Coenye T., Hoste B., De Vos P., Henry D., Speert D. P. 2000; Identification and population structure of Burkholderia stabilis sp.nov. (formerly Burkholderia cepacia genomovar IV). J Clin Microbiol 38:1042–1047
    [Google Scholar]
  38. Vandamme P., Henry D., Coenye T., Nzula S., Vancanneyt M., LiPuma J. J., Speert D. P., Govan J. R. W., Mahenthiralingam E. 2002; Burkholderia anthina sp.nov. and Burkholderia pyrrocinia , two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. FEMS Immunol Med Microbiol 33:143–149 [CrossRef]
    [Google Scholar]
  39. Vandamme P., Holmes B., Coenye T., Goris J., Mahenthiralingam E., LiPuma J. J., Govan J. R. W. 2003; Burkholderia cenocepacia sp.nov. –a new twist to an old story. Res Microbiol 154:91–96 [CrossRef]
    [Google Scholar]
  40. Van den Eede G., Deblaere R., Goethals K., Van Montagu M., Holsters M. 1992; Broad host range and promoter selection vectors for bacteria that interact with plants. Mol Plant–Microbe Interact 5:228–234 [CrossRef]
    [Google Scholar]
  41. Vermis K., Vandekerckhove C., Nelis H. J., Vandamme P. A. R. 2002a; Evaluation of restriction fragment length polymorphism analysis of 16S rDNA as a tool for genomovar characterisation within the Burkholderia cepacia complex. FEMS Microbiol Lett 214:1–5 [CrossRef]
    [Google Scholar]
  42. Vermis K., Coenye T., Mahenthiralingam E., Nelis H. J., Vandamme P. 2002b; Evaluation of species-specific recA -based PCR tests for genomovar level identification within the Burkholderia cepacia complex. J Med Microbiol 51:937–940
    [Google Scholar]
  43. Vermis K., Coenye T., LiPuma J. J., Mahenthiralingam E., Nelis H. J., Vandamme P. 2004; Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp.nov. Int J Syst Evol Microbiol in press
    [Google Scholar]
  44. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268 [CrossRef]
    [Google Scholar]
  45. Whitby P. W., Pope L. C., Carter K. B., LiPuma J. J., Stull T. L. 2000; Species-specific PCR as a tool for the identification of Burkholderia gladioli . J Clin Microbiol 38:282–285
    [Google Scholar]
  46. Woodcock D. M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S. S., Michael M. Z., Graham M. W. 1989; Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478 [CrossRef]
    [Google Scholar]
  47. Yabuuchi E., Kawamura Y., Ezaki T., Ikedo M., Dejsirilert S., Fujiwara N., Naka T., Kobayashi K. 2000; Burkholderia uboniae sp.nov., l-arabinose-assimilating but different from Burkholderia thailandesis and Burkholderia vietnamiensis . Microbiol Immunol 44:307–317 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05504-0
Loading
/content/journal/jmm/10.1099/jmm.0.05504-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error