1887

Abstract

has become one of the most important causes of nosocomial infections in recent years. The staphylococcal accessory gene regulator () is the most important locus responsible for the regulation of virulence factors, and it has been shown to be polymorphic. The aim of this study was to investigate the locus and its genetic polymorphisms in different Chinese isolates and the relationship between genetic polymorphisms and pathogenicity. Specific PCR was used to amplify the different groups. Results were confirmed by restriction enzyme digestion and sequence analysis. mutations were detected and three groups of were determined. Of the isolates, 12 % were pathogenic and 17 % had naturally occurring mutations ( > 0.05). Pathogenic isolates comprised 68.2 % group I, 19.3 % group II and 12.5 % group III, while isolates from healthy controls comprised 39 % group I, 51 % group II and 10 % group III ( < 0.01). The percentages of locus mutants and the three groups in different hospitals showed no significant differences ( > 0.05). The percentage of group I isolated from catheters and blood was higher than that isolated from the other clinical specimens. This is the first study to investigate the genetic polymorphism of in in China. The mean percentage of locus mutants was 14.9 % (12 % in clinical specimens; 17.7 % in controls). Genetic polymorphism of in was linked to its pathogenicity; group I was associated with pathogenicity, while most isolates from healthy subjects were group II. The mechanism is to be investigated.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05406-0
2004-06-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/6/JM530613.html?itemId=/content/journal/jmm/10.1099/jmm.0.05406-0&mimeType=html&fmt=ahah

References

  1. Abdelnour, A., Arvidson, S., Bremell, T., Ryden, C. & Tarkowski, A. ( 1993;). The accessory gene regulator (agr) controls Staphylococcus aureus virulence in a murine arthritis model. Infect Immun 61, 3879–3885.
    [Google Scholar]
  2. Aiyar, A. ( 2000;). The use of clustal w and clustal x for multiple sequence alignment. Methods Mol Biol 132, 221–241.
    [Google Scholar]
  3. Ammendolia, M. G., Di Rosa, R., Montanaro, L., Arciola, C. R. & Baldassarri, L. ( 1999;). Slime production and expression of the slime-associated antigen by staphylococcal clinical isolates. J Clin Microbiol 37, 3235–3238.
    [Google Scholar]
  4. Caputo, G. M., Archer, G. L., Calderwood, S. B., DiNubile, M. J. & Karchmer, A. W. ( 1987;). Native valve endocarditis due to coagulase-negative staphylococci: clinical and microbiologic features. Am J Med 83, 619–625.[CrossRef]
    [Google Scholar]
  5. Christensen, G. D., Simpson, W. A., Younger, J. J., Baddour, L. M., Barrett, F. F., Melton, D. M. & Beachey, E. H. ( 1985;). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22, 996–1006.
    [Google Scholar]
  6. Day, N. P., Moore, C. E., Enright, M. C., Berendt, A. R., Smith, J. M., Murphy, M. F., Peacock, S. J., Spratt, B. G. & Feil, E. J. ( 2001;). A link between virulence and ecological abundance in natural populations of Staphylococcus aureus. Science 292, 114–116.[CrossRef]
    [Google Scholar]
  7. Dufour, P., Jarraud, S., Vandenesch, F., Greenland, T., Novick, R. P., Bes, M., Etienne, J. & Lina, G. ( 2002;). High genetic variability of the agr locus in Staphylococcus species. J Bacteriol 184, 1180–1186.[CrossRef]
    [Google Scholar]
  8. Heilmann, C., Hussain, M., Peters, G. & Götz, F. ( 1997;). Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24, 1013–1024.[CrossRef]
    [Google Scholar]
  9. Hoyle, B. D. & Costerton, J. W. ( 1991;). Bacterial resistance to antibiotics: the role of biofilms. Prog Drug Res 37, 91–105.
    [Google Scholar]
  10. Huebner, J. & Goldmann, D. A. ( 1999;). Coagulase-negative staphylococci: role as pathogens. Annu Rev Med 50, 223–236.[CrossRef]
    [Google Scholar]
  11. Jarraud, S., Lyon, G. J., Figueiredo, A. M., Gerard, L., Vandenesch, F., Etienne, J., Muir, T. W. & Novick, R. P. ( 2000;). Exfoliatin-producing strains define a fourth agr specificity group in Staphylococcus aureus. J Bacteriol 182, 6517–6522.[CrossRef]
    [Google Scholar]
  12. Jarraud, S., Mougel, C., Thioulouse, J., Lina, G., Meugnier, H., Forey, F., Nesme, X., Etienne, J. & Vandenesch, F. ( 2002;). Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun 70, 631–641.[CrossRef]
    [Google Scholar]
  13. Ji, G., Beavis, R. & Novick, R. P. ( 1997;). Bacterial interference caused by autoinducing peptide variants. Science 276, 2027–2030.[CrossRef]
    [Google Scholar]
  14. Lina, G., Boutite, F., Tristan, A., Bes, M., Etienne, J. & Vandenesch, F. ( 2003;). Bacterial competition for human nasal cavity colonization: role of staphylococcal agr alleles. Appl Environ Microbiol 69, 18–23.[CrossRef]
    [Google Scholar]
  15. Mah, T. F. & O'Toole, G. A. ( 2001;). Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9, 34–39.[CrossRef]
    [Google Scholar]
  16. Moore, P. C. & Lindsay, J. A. ( 2001;). Genetic variation among hospital isolates of methicillin-sensitive Staphylococcus aureus: evidence for horizontal transfer of virulence genes. J Clin Microbiol 39, 2760–2767.[CrossRef]
    [Google Scholar]
  17. Novick, R. P. & Muir, T. W. ( 1999;). Virulence gene regulation by peptides in staphylococci and other Gram-positive bacteria. Curr Opin Microbiol 2, 40–45.[CrossRef]
    [Google Scholar]
  18. O'Gara, J. P. & Humphreys, H. ( 2001;). Staphylococcus epidermidis biofilms: importance and implications. J Med Microbiol 50, 582–587.
    [Google Scholar]
  19. Otto, M. ( 2001;). Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides 22, 1603–1608.[CrossRef]
    [Google Scholar]
  20. Otto, M., Süssmuth, R., Jung, G. & Götz, F. ( 1998;). Structure of the pheromone peptide of the Staphylococcus epidermidis agr system. FEBS Lett 424, 89–94.[CrossRef]
    [Google Scholar]
  21. Otto, M., Süssmuth, R., Vuong, C., Jung, G. & Götz, F. ( 1999;). Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett 450, 257–262.[CrossRef]
    [Google Scholar]
  22. Otto, M., Echner, H., Voelter, W. & Götz, F. ( 2001;). Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis. Infect Immun 69, 1957–1960.[CrossRef]
    [Google Scholar]
  23. Papakyriacou, H., Vaz, D., Simor, A., Louie, M. & McGavin, M. J. ( 2000;). Molecular analysis of the accessory gene regulator (agr) locus and balance of virulence factor expression in epidemic methicillin-resistant Staphylococcus aureus. J Infect Dis 181, 990–1000.[CrossRef]
    [Google Scholar]
  24. Peschel, A., Otto, M., Jack, R. W., Kalbacher, H., Jung, G. & Götz, F. ( 1999;). Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274, 8405–8410.[CrossRef]
    [Google Scholar]
  25. Petinaki, E., Arvaniti, A., Dimitracopoulos, G. & Spiliopoulou, I. ( 2001;). Detection of mecA, mecR1 and mecI genes among clinical isolates of methicillin-resistant staphylococci by combined polymerase chain reactions. J Antimicrob Chemother 47, 297–304.[CrossRef]
    [Google Scholar]
  26. Raad, I., Alrahwan, A. & Rolston, K. ( 1998;). Staphylococcus epidermidis: emerging resistance and need for alternative agents. Clin Infect Dis 26, 1182–1187.[CrossRef]
    [Google Scholar]
  27. Recsei, P., Kreiswirth, B., O'Reilly, M., Schlievert, P., Gruss, A. & Novick, R. P. ( 1986;). Regulation of exoprotein gene expression in Staphylococcus aureus by agr. Mol Gen Genet 202, 58–61.[CrossRef]
    [Google Scholar]
  28. von Eiff, C., Peters, G. & Heilmann, C. ( 2002;). Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis 2, 677–685.[CrossRef]
    [Google Scholar]
  29. Vuong, C. & Otto, M. ( 2002;). Staphylococcus epidermidis infections. Microbes Infect 4, 481–489.[CrossRef]
    [Google Scholar]
  30. Vuong, C., Götz, F. & Otto, M. ( 2000a;). Construction and characterization of an agr deletion mutant of Staphylococcus epidermidis. Infect Immun 68, 1048–1053.[CrossRef]
    [Google Scholar]
  31. Vuong, C., Saenz, H. L., Götz, F. & Otto, M. ( 2000b;). Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis 182, 1688–1693.[CrossRef]
    [Google Scholar]
  32. Vuong, C., Gerke, C., Somerville, G. A., Fischer, E. R. & Otto, M. ( 2003;). Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188, 706–718.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05406-0
Loading
/content/journal/jmm/10.1099/jmm.0.05406-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error