1887

Abstract

The aim of this study was to examine the levels of circulating leukocytes and lymphocyte subpopulations before and immediately after experimentally induced swine dysentery. Twenty-one healthy crossbred pigs (∼22 kg) were orally inoculated with . Blood was sampled before inoculation and when clinical signs of swine dysentery occurred. Pigs that remained healthy were sampled when killed. Total and differential white blood cell counts were performed, and lymphocyte subpopulations were analysed using flow cytometry. Following a mean incubation period of 13 days, 12 pigs developed swine dysentery, whereas nine remained healthy throughout the study. Before inoculation, pigs that subsequently developed swine dysentery displayed higher levels of circulating γδ T cells (mean ± ; 30.7 ± 3.5 %) compared with pigs that remained healthy (14.9 ± 1.4 %). Sick animals also displayed lower levels of CD8 cells (24.6 ± 1.5 %), cytotoxic/suppressor T cells (10.9 ± 1.3 %) and CD4 CD8 T cells (8.1 ± 1.0 %) than the pigs that remained healthy (34.9 ± 3.1 %; 17.6 ± 2.0 %; 13.6 ± 2.3 %). No difference was observed in leukocyte counts before inoculation. At onset of swine dysentery, there was an increase in monocytes (from 1.5 ± 0.2 × 10 to 3.8 ± 0.5 × 10 l) and CD4 CD8 T cells (from 5.8 ± 0.9 to 8.9 ± 0.7 %). In conclusion, γδ T cells and CD8 cells may be associated with susceptibility to experimentally induced swine dysentery, whereas monocytes and CD4 CD8 T cells appear to be the major responding leukocytes during the disease.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05359-0
2004-04-01
2019-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/4/JM530402.html?itemId=/content/journal/jmm/10.1099/jmm.0.05359-0&mimeType=html&fmt=ahah

References

  1. Boismenu, R. & Havran, W. L. ( 1994;). Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 1253–1255.[CrossRef]
    [Google Scholar]
  2. Buller, N. B. & Hampson, D. J. ( 1994;). Antimicrobial susceptibility testing of Serpulina hyodysenteriae. Aust Vet J 71, 211–214.[CrossRef]
    [Google Scholar]
  3. Chiodini, R. J. & Davis, W. C. ( 1992;). The cellular immunology of bovine paratuberculosis: the predominant response is mediated by cytotoxic γ/δ T lymphocytes which prevent CD4+ activity. Microb Pathog 13, 447–463.[CrossRef]
    [Google Scholar]
  4. Emoto, M., Nishimura, H., Sakai, T., Hiromatsu, K., Gomi, H., Itohara, S. & Yoshikai, Y. ( 1995;). Mice deficient in γδ T cells are resistant to lethal infection with Salmonella choleraesuis. Infect Immun 63, 3736–3738.
    [Google Scholar]
  5. Fellström, C. & Gunnarsson, A. ( 1995;). Phenotypical characterisation of intestinal spirochaetes isolated from pigs. Res Vet Sci 59, 1–4.[CrossRef]
    [Google Scholar]
  6. Fernie, D. S., Ripley, P. H. & Walker, P. D. ( 1983;). Swine dysentery: protection against experimental challenge following single dose parenteral immunisation with inactivated Treponema hyodysenteriae. Res Vet Sci 35, 217–221.
    [Google Scholar]
  7. Fujihashi, K., Taguchi, T., McGhee, J. R., Eldridge, J. H., Bruce, M. G., Green, D. R., Singh, B. & Kiyono, H. ( 1990;). Regulatory function for murine intraepithelial lymphocytes.Two subsets of CD3+, T cell receptor-1+ intraepithelial lymphocyte T cells abrogate oral tolerance. J Immunol 145, 2010–2019.
    [Google Scholar]
  8. Guy-Grand, D. & Vassalli, P. ( 1993;). Gut intraepithelial T lymphocytes. Curr Opin Immunol 5, 247–252.[CrossRef]
    [Google Scholar]
  9. Hiromatsu, K., Yoshikai, Y., Matsuzaki, G., Ohga, S., Muramori, K., Matsumoto, K., Bluestone, J. A. & Nomoto, K. ( 1992;). A protective role of γ/δ T cells in primary infection with Listeria monocytogenes in mice. J Exp Med 175, 49–56.[CrossRef]
    [Google Scholar]
  10. Ishigami, M., Nishimura, H., Yoshioka, K., Kakumu, S. & Yoshikai, Y. ( 1999;). The role of intrahepatic γδ-T cells for liver injury induced by Salmonella infection in mouse. Microbiol Immunol 43, 461–469.[CrossRef]
    [Google Scholar]
  11. Joens, L. A., Harris, D. L. & Baum, D. H. ( 1979;). Immunity to swine dysentery in recovered pigs. Am J Vet Res 40, 1352–1354.
    [Google Scholar]
  12. Joens, L. A., DeYoung, D. W., Cramer, J. C. & Glock, R. D. ( 1984;). The immune response of the porcine colon to swine dysentery. In Proceedings of the International Pig Veterinary Society Congress, Ghent, Belgium, p. 187.
  13. Joens, L. A., DeYoung, D. W., Glock, R. D., Mapother, M. E., Cramer, J. D. & Wilcox, H. E., III ( 1985;). Passive protection of segmented swine colonic loops against swine dysentery. Am J Vet Res 46, 2369–2371.
    [Google Scholar]
  14. Koets, A., Rutten, V., Hoek, A., van Mil, F., Muller, K., Bakker, D., Gruys, E. & van Eden, W. ( 2002;). Progressive bovine paratuberculosis is associated with local loss of CD4+ T cells, increased frequency of γδ T cells, and related changes in T-cell function. Infect Immun 70, 3856–3864.[CrossRef]
    [Google Scholar]
  15. Komano, H., Fujiura, Y., Kawaguchi, M. & 10 other authors ( 1995;). Homeostatic regulation of intestinal epithelia by intraepithelial γδ T cells. Proc Natl Acad Sci U S A 92, 6147–6151.[CrossRef]
    [Google Scholar]
  16. Levy, Y. & Brouet, J. C. ( 1994;). Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the bcl-2 protein. J Clin Invest 93, 424–428.[CrossRef]
    [Google Scholar]
  17. Magnusson, U., Wattrang, E., Tsuma, V. & Fossum, C. ( 1998;). Effects of stress resulting from short-term restraint on in vitro functional capacity of leukocytes obtained from pigs. Am J Vet Res 59, 421–425.
    [Google Scholar]
  18. Molnar, L. ( 1996;). Sensitivity of strains of Serpulina hyodysenteriae isolated in Hungary to chemotherapeutic drugs. Vet Rec 138, 158–160.[CrossRef]
    [Google Scholar]
  19. Munk, M. E., Gatrill, A. J. & Kaufmann, S. H. ( 1990;). Target cell lysis and IL-2 secretion by γ/δ T lymphocytes after activation with bacteria. J Immunol 145, 2434–2439.
    [Google Scholar]
  20. Murray, H. W. ( 1990;). Gamma interferon, cytokine-induced macrophage activation, and antimicrobial host defense.In vitro, in animal models, and in humans. Diagn Microbiol Infect Dis 13, 411–421.[CrossRef]
    [Google Scholar]
  21. Ober, B. T., Summerfield, A., Mattlinger, C., Wiesmuller, K. H., Jung, G., Pfaff, E., Saalmuller, A. & Rziha, H. J. ( 1998;). Vaccine-induced, pseudorabies virus-specific, extrathymic CD4+ CD8+ memory T-helper cells in swine. J Virol 72, 4866–4873.
    [Google Scholar]
  22. Pescovitz, M. D., Sakopoulos, A. G., Gaddy, J. A., Husmann, R. J. & Zuckermann, F. A. ( 1994;). Porcine peripheral blood CD4+/CD8+ dual expressing T-cells. Vet Immunol Immunopathol 43, 53–62.[CrossRef]
    [Google Scholar]
  23. Rees, A. S., Lysons, R. J., Stokes, C. R. & Bourne, F. J. ( 1989a;). Antibody production by the pig colon during infection with Treponema hyodysenteriae. Res Vet Sci 47, 263–269.
    [Google Scholar]
  24. Rees, A. S., Lysons, R. J., Stokes, C. R. & Bourne, F. J. ( 1989b;). The effect of parenteral immunisation on antibody production in the pig colon. Vet Immunol Immunopathol 23, 171–178.[CrossRef]
    [Google Scholar]
  25. Rothwell, L., Gramzinski, R. A., Rose, M. E. & Kaiser, P. ( 1995;). Avian coccidiosis: changes in intestinal lymphocyte populations associated with the development of immunity to Eimeria maxima. Parasite Immunol 17, 525–533.[CrossRef]
    [Google Scholar]
  26. Santos Lima, E. C. & Minoprio, P. ( 1996;). Chagas’ disease is attenuated in mice lacking γδ T cells. Infect Immun 64, 215–221.
    [Google Scholar]
  27. Skeen, M. J. & Ziegler, H. K. ( 1993;). Induction of murine peritoneal γ/δ T cells and their role in resistance to bacterial infection. J Exp Med 178, 971–984.[CrossRef]
    [Google Scholar]
  28. Steele, C., Zheng, M., Young, E., Marrero, L., Shellito, J. E. & Kolls, J. K. ( 2002;). Increased host resistance against Pneumocystis carinii pneumonia in γδ T-cell-deficient mice: protective role of gamma interferon and CD8+ T cells. Infect Immun 70, 5208–5215.[CrossRef]
    [Google Scholar]
  29. Taguchi, T., McGhee, J. R., Coffman, R. L., Beagley, K. W., Eldridge, J. H., Takatsu, K. & Kiyono, H. ( 1990;). Analysis of Th1 and Th2 cells in murine gut-associated tissues.Frequencies of CD4+ and CD8+ T cells that secrete IFN-γ and IL-5. J Immunol 145, 68–77.
    [Google Scholar]
  30. Tsukaguchi, K., Balaji, K. N. & Boom, W. H. ( 1995;). CD4+ αβ T cell and γδ T cell responses to Mycobacterium tuberculosis.Similarities and differences in Ag recognition, cytotoxic effector function, and cytokine production. J Immunol 154, 1786–1796.
    [Google Scholar]
  31. Waters, W. R., Pesch, B. A., Hontecillas, R., Sacco, R. E., Zuckermann, F. A. & Wannemuehler, M. J. ( 1999a;). Cellular immune responses of pigs induced by vaccination with either a whole cell sonicate or pepsin-digested Brachyspira (Serpulina) hyodysenteriae bacterin. Vaccine 18, 711–719.[CrossRef]
    [Google Scholar]
  32. Waters, W. R., Sacco, R. E., Dorn, A. D., Hontecillas, R., Zuckermann, F. A. & Wannemuehler, M. J. ( 1999b;). Systemic and mucosal immune responses of pigs to parenteral immunization with a pepsin-digested Serpulina hyodysenteriae bacterin. Vet Immunol Immunopathol 69, 75–87.[CrossRef]
    [Google Scholar]
  33. Waters, W. R., Hontecillas, R., Sacco, R. E., Zuckermann, F. A., Harkins, K. R., Bassaganya-Riera, J. & Wannemuehler, M. J. ( 2000;). Antigen-specific proliferation of porcine CD8αα cells to an extracellular bacterial pathogen. Immunology 101, 333–341.[CrossRef]
    [Google Scholar]
  34. Williams, D. M., Grubbs, B. G., Kelly, K., Pack, E. & Rank, R. G. ( 1996;). Role of γ-δ T cells in murine Chlamydia trachomatis infection. Infect Immun 64, 3916–3919.
    [Google Scholar]
  35. Yang, H. & Parkhouse, R. M. ( 1996;). Phenotypic classification of porcine lymphocyte subpopulations in blood and lymphoid tissues. Immunology 89, 76–83.[CrossRef]
    [Google Scholar]
  36. Zuckermann, F. A. & Husmann, R. J. ( 1996;). Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 87, 500–512.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05359-0
Loading
/content/journal/jmm/10.1099/jmm.0.05359-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error