1887

Abstract

Eighteen reference strains of were differentiated by PCR- and nested PCR-based RFLP analysis, using two restriction digestions, one with I and the other with the three enzymes II, RI and fI. I digestion allowed the differentiation of 12 different profiles after CT1/CT5 PCR and 13 different profiles after the nested PCR. The triple hydrolysis permitted the identification of 15 different patterns. In all, 16/18 reference strains were clearly identified. These reference patterns were successfully used to genotype 34 of 35 (28 strains and 7 clinical specimens) samples from infected students, collected during a screening programme in Yaounde (Cameroon). Genotypes D, Da, E, F, G and J were found. The most prevalent genotype was E ( = 14; 40 %), followed by F ( = 7; 20 %). As RFLP patterns of reference strains are essential for typing clinical isolates, they will greatly facilitate characterization in many resource-limited laboratories.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05333-0
2004-01-01
2019-11-14
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/1/JM530107.html?itemId=/content/journal/jmm/10.1099/jmm.0.05333-0&mimeType=html&fmt=ahah

References

  1. Batteiger, B. E., Lennington, W., Newhall, W. J., Katz, B. P., Morrison, H. T. & Jones, R. B. ( 1989;). Correlation of infecting serovar and local inflammation in genital chlamydial infections. J Infect Dis 160, 332–336.[CrossRef]
    [Google Scholar]
  2. Brunham, R. C., Kimani, J., Bwayo, J. & 8 other authors ( 1996;). The epidemiology of Chlamydia trachomatis within a sexually transmitted diseases core group. J Infect Dis 173, 950–956.[CrossRef]
    [Google Scholar]
  3. Dean, D., Suchland, R. J. & Stamm, W. E. ( 2000;). Evidence for long-term cervical persistence of Chlamydia trachomatis by omp1 genotyping. J Infect Dis 182, 909–916.[CrossRef]
    [Google Scholar]
  4. Dutilh, B., Bebear, C., Rodriguez, P., Vekris, A., Bonnet, J. & Garret, M. ( 1989;). Specific amplification of a DNA sequence common to all Chlamydia trachomatis serovars using the polymerase chain reaction. Res Microbiol 140, 7–16.[CrossRef]
    [Google Scholar]
  5. Frost, E. H., Deslandes, S., Veilleux, S. & Bourgaux-Ramoisy, D. ( 1991;). Typing Chlamydia trachomatis by detection of restriction fragment length polymorphism in the gene encoding the major outer membrane protein. J Infect Dis 163, 1103–1107.[CrossRef]
    [Google Scholar]
  6. Ikehata, M., Numazaki, K. & Chiba, S. ( 2000;). Analysis of Chlamydia trachomatis serovars in endocervical specimens derived from pregnant Japanese women. FEMS Immunol Med Microbiol 27, 35–41.[CrossRef]
    [Google Scholar]
  7. Jurstrand, M., Falk, L., Fredlund, H., Lindberg, M., Olcen, P., Andersson, S., Persson, K., Albert, J. & Backman, A. ( 2001;). Characterization of Chlamydia trachomatis omp1 genotypes among sexually transmitted disease patients in Sweden. J Clin Microbiol 39, 3915–3919.[CrossRef]
    [Google Scholar]
  8. Lan, J., Walboomers, J. M., Roosendaal, R., van Doornum, G. J., MacLaren, D. M., Meijer, C. J. & van den Brule, A. J. ( 1993;). Direct detection and genotyping of Chlamydia trachomatis in cervical scrapes by using polymerase chain reaction and restriction fragment length polymorphism analysis. J Clin Microbiol 31, 1060–1065.
    [Google Scholar]
  9. Lan, J., Ossewaarde, J. M., Walboomers, J. M., Meijer, C. J. & van den Brule, A. J. ( 1994;). Improved PCR sensitivity for direct genotyping of Chlamydia trachomatis serovars by using a nested PCR. J Clin Microbiol 32, 528–530.
    [Google Scholar]
  10. Morré, S. A., Ossewaarde, J. M., Lan, J., van Doornum, G. J. J., Walboomers, J. M. M., MacLaren, D. M., Meijer, C. J. L. M. & van den Brule, A. J. C. ( 1998a;). Serotyping and genotyping of genital Chlamydia trachomatis isolates reveal variants of serovars Ba, G, and J as confirmed by omp1 nucleotide sequence analysis. J Clin Microbiol 36, 345–351.
    [Google Scholar]
  11. Morré, S. A., Moes, R., Van Valkengoed, I., Boeke, J. P., van Eijk, J. T. M., Meijer, C. J. L. M. & Van den Brule, A. J. C. ( 1998b;). Genotyping of Chlamydia trachomatis in urine specimens will facilitate large epidemiological studies. J Clin Microbiol 36, 3077–3078.
    [Google Scholar]
  12. Morré, S. A., Rozendaal, L., van Valkengoed, I. G. M. & 8 other authors ( 2000;). Urogenital Chlamydia trachomatis serovars in men and women with a symptomatic or asymptomatic infection: an association with clinical manifestations? J Clin Microbiol 38, 2292–2296.
    [Google Scholar]
  13. Ngandjio, A., Clerc, M., Fonkoua, M. C. & 7 other authors ( 2003;). Screening of volunteer students in Yaounde (Cameroon, Central Africa) for Chlamydia trachomatis infection and genotyping of isolated C.trachomatis strains. J Clin Microbiol 41, 4404–4407.[CrossRef]
    [Google Scholar]
  14. Ossewaarde, J. M., Rieffe, M., de Vries, A., Derksen-Nawrocki, R. P., Hooft, H. J., van Doornum, G. J. & van Loon, A. M. ( 1994;). Comparison of two panels of monoclonal antibodies for determination of Chlamydia trachomatis serovars. J Clin Microbiol 32, 2968–2974.
    [Google Scholar]
  15. Poole, E. & Lamont, I. ( 1992;). Chlamydia trachomatis serovar differentiation by direct sequence analysis of the variable segment 4 region of the major outer membrane protein gene. Infect Immun 60, 1089–1094.
    [Google Scholar]
  16. Rodriguez, P., Vekris, A., de Barbeyrac, B., Dutilh, B., Bonnet, J. & Bebear, C. ( 1991;). Typing of Chlamydia trachomatis by restriction endonuclease analysis of the amplified major outer membrane protein gene. J Clin Microbiol 29, 1132–1136.
    [Google Scholar]
  17. Rodriguez, P., de Barbeyrac, B., Persson, K., Dutilh, B. & Bebear, C. ( 1993;). Evaluation of molecular typing for epidemiological study of Chlamydia trachomatis genital infections. J Clin Microbiol 31, 2238–2240.
    [Google Scholar]
  18. Sayada, C., Denamur, E., Orfila, J., Catalan, F. & Elion, J. ( 1991;). Rapid genotyping of the Chlamydia trachomatis major outer membrane protein by the polymerase chain reaction. FEMS Microbiol Lett 67, 73–78.
    [Google Scholar]
  19. Stephens, R. S., Kalman, S., Lammel, C. & 9 other authors ( 1998;). Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754–759.[CrossRef]
    [Google Scholar]
  20. Sturm-Ramirez, K., Brumblay, H., Diop, K. & 7 other authors ( 2000;). Molecular epidemiology of genital Chlamydia trachomatis infection in high-risk women in Senegal, West Africa. J Clin Microbiol 38, 138–145.
    [Google Scholar]
  21. van de Laar, M. J., van Duynhoven, Y. T., Fennema, J. S., Ossewaarde, J. M., van den Brule, A. J., van Doornum, G. J., Coutinho, R. A. & van den Hoek, J. A. ( 1996;). Differences in clinical manifestations of genital chlamydial infections related to serovars. Genitourin Med 72, 261–265.
    [Google Scholar]
  22. van Duynhoven, Y. T., Ossewaarde, J. M., Derksen-Nawrocki, R. P., van der Meijden, W. I. & van de Laar, M. J. ( 1998;). Chlamydia trachomatis genotypes: correlation with clinical manifestations of infection and patients’ characteristics. Clin Infect Dis 26, 314–322.[CrossRef]
    [Google Scholar]
  23. Yuan, Y., Zhang, Y. X., Watkins, N. G. & Caldwell, H. D. ( 1989;). Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun 57, 1040–1049.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05333-0
Loading
/content/journal/jmm/10.1099/jmm.0.05333-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error