1887

Abstract

Eighteen reference strains of were differentiated by PCR- and nested PCR-based RFLP analysis, using two restriction digestions, one with I and the other with the three enzymes II, RI and fI. I digestion allowed the differentiation of 12 different profiles after CT1/CT5 PCR and 13 different profiles after the nested PCR. The triple hydrolysis permitted the identification of 15 different patterns. In all, 16/18 reference strains were clearly identified. These reference patterns were successfully used to genotype 34 of 35 (28 strains and 7 clinical specimens) samples from infected students, collected during a screening programme in Yaounde (Cameroon). Genotypes D, Da, E, F, G and J were found. The most prevalent genotype was E ( = 14; 40 %), followed by F ( = 7; 20 %). As RFLP patterns of reference strains are essential for typing clinical isolates, they will greatly facilitate characterization in many resource-limited laboratories.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05333-0
2004-01-01
2021-02-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/53/1/JM530107.html?itemId=/content/journal/jmm/10.1099/jmm.0.05333-0&mimeType=html&fmt=ahah

References

  1. Batteiger B. E., Lennington W., Newhall W. J., Katz B. P., Morrison H. T., Jones R. B. 1989; Correlation of infecting serovar and local inflammation in genital chlamydial infections. J Infect Dis 160:332–336 [CrossRef]
    [Google Scholar]
  2. Brunham R. C., Kimani J., Bwayo J. & 8 other authors; 1996; The epidemiology of Chlamydia trachomatis within a sexually transmitted diseases core group. J Infect Dis 173:950–956 [CrossRef]
    [Google Scholar]
  3. Dean D., Suchland R. J., Stamm W. E. 2000; Evidence for long-term cervical persistence of Chlamydia trachomatis by omp1 genotyping. J Infect Dis 182:909–916 [CrossRef]
    [Google Scholar]
  4. Dutilh B., Bebear C., Rodriguez P., Vekris A., Bonnet J., Garret M. 1989; Specific amplification of a DNA sequence common to all Chlamydia trachomatis serovars using the polymerase chain reaction. Res Microbiol 140:7–16 [CrossRef]
    [Google Scholar]
  5. Frost E. H., Deslandes S., Veilleux S., Bourgaux-Ramoisy D. 1991; Typing Chlamydia trachomatis by detection of restriction fragment length polymorphism in the gene encoding the major outer membrane protein. J Infect Dis 163:1103–1107 [CrossRef]
    [Google Scholar]
  6. Ikehata M., Numazaki K., Chiba S. 2000; Analysis of Chlamydia trachomatis serovars in endocervical specimens derived from pregnant Japanese women. FEMS Immunol Med Microbiol 27:35–41 [CrossRef]
    [Google Scholar]
  7. Jurstrand M., Falk L., Fredlund H., Lindberg M., Olcen P., Andersson S., Persson K., Albert J., Backman A. 2001; Characterization of Chlamydia trachomatis omp1 genotypes among sexually transmitted disease patients in Sweden. J Clin Microbiol 39:3915–3919 [CrossRef]
    [Google Scholar]
  8. Lan J., Walboomers J. M., Roosendaal R., van Doornum G. J., MacLaren D. M., Meijer C. J., van den Brule A. J. 1993; Direct detection and genotyping of Chlamydia trachomatis in cervical scrapes by using polymerase chain reaction and restriction fragment length polymorphism analysis. J Clin Microbiol 31:1060–1065
    [Google Scholar]
  9. Lan J., Ossewaarde J. M., Walboomers J. M., Meijer C. J., van den Brule A. J. 1994; Improved PCR sensitivity for direct genotyping of Chlamydia trachomatis serovars by using a nested PCR. J Clin Microbiol 32:528–530
    [Google Scholar]
  10. Morré S. A., Ossewaarde J. M., Lan J., van Doornum G. J. J., Walboomers J. M. M., MacLaren D. M., Meijer C. J. L. M., van den Brule A. J. C. 1998a; Serotyping and genotyping of genital Chlamydia trachomatis isolates reveal variants of serovars Ba, G, and J as confirmed by omp1 nucleotide sequence analysis. J Clin Microbiol 36:345–351
    [Google Scholar]
  11. Morré S. A., Moes R., Van Valkengoed I., Boeke J. P., van Eijk J. T. M., Meijer C. J. L. M., Van den Brule A. J. C. 1998b; Genotyping of Chlamydia trachomatis in urine specimens will facilitate large epidemiological studies. J Clin Microbiol 36:3077–3078
    [Google Scholar]
  12. Morré S. A., Rozendaal L., van Valkengoed I. G. M. & 8 other authors; 2000; Urogenital Chlamydia trachomatis serovars in men and women with a symptomatic or asymptomatic infection: an association with clinical manifestations?. J Clin Microbiol 38:2292–2296
    [Google Scholar]
  13. Ngandjio A., Clerc M., Fonkoua M. C. & 7 other authors; 2003; Screening of volunteer students in Yaounde (Cameroon, Central Africa) for Chlamydia trachomatis infection and genotyping of isolated C.trachomatis strains. J Clin Microbiol 41:4404–4407 [CrossRef]
    [Google Scholar]
  14. Ossewaarde J. M., Rieffe M., de Vries A., Derksen-Nawrocki R. P., Hooft H. J., van Doornum G. J., van Loon A. M. 1994; Comparison of two panels of monoclonal antibodies for determination of Chlamydia trachomatis serovars. J Clin Microbiol 32:2968–2974
    [Google Scholar]
  15. Poole E., Lamont I. 1992; Chlamydia trachomatis serovar differentiation by direct sequence analysis of the variable segment 4 region of the major outer membrane protein gene. Infect Immun 60:1089–1094
    [Google Scholar]
  16. Rodriguez P., Vekris A., de Barbeyrac B., Dutilh B., Bonnet J., Bebear C. 1991; Typing of Chlamydia trachomatis by restriction endonuclease analysis of the amplified major outer membrane protein gene. J Clin Microbiol 29:1132–1136
    [Google Scholar]
  17. Rodriguez P., de Barbeyrac B., Persson K., Dutilh B., Bebear C. 1993; Evaluation of molecular typing for epidemiological study of Chlamydia trachomatis genital infections. J Clin Microbiol 31:2238–2240
    [Google Scholar]
  18. Sayada C., Denamur E., Orfila J., Catalan F., Elion J. 1991; Rapid genotyping of the Chlamydia trachomatis major outer membrane protein by the polymerase chain reaction. FEMS Microbiol Lett 67:73–78
    [Google Scholar]
  19. Stephens R. S., Kalman S., Lammel C. & 9 other authors; 1998; Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis . Science 282:754–759 [CrossRef]
    [Google Scholar]
  20. Sturm-Ramirez K., Brumblay H., Diop K. & 7 other authors; 2000; Molecular epidemiology of genital Chlamydia trachomatis infection in high-risk women in Senegal, West Africa. J Clin Microbiol 38:138–145
    [Google Scholar]
  21. van de Laar M. J., van Duynhoven Y. T., Fennema J. S., Ossewaarde J. M., van den Brule A. J., van Doornum G. J., Coutinho R. A., van den Hoek J. A. 1996; Differences in clinical manifestations of genital chlamydial infections related to serovars. Genitourin Med 72:261–265
    [Google Scholar]
  22. van Duynhoven Y. T., Ossewaarde J. M., Derksen-Nawrocki R. P., van der Meijden W. I., van de Laar M. J. 1998; Chlamydia trachomatis genotypes: correlation with clinical manifestations of infection and patients’ characteristics. Clin Infect Dis 26:314–322 [CrossRef]
    [Google Scholar]
  23. Yuan Y., Zhang Y. X., Watkins N. G., Caldwell H. D. 1989; Nucleotide and deduced amino acid sequences for the four variable domains of the major outer membrane proteins of the 15 Chlamydia trachomatis serovars. Infect Immun 57:1040–1049
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05333-0
Loading
/content/journal/jmm/10.1099/jmm.0.05333-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error