1887

Abstract

This study used multilocus sequence typing (MLST) of total DNA extracted from faecal specimens to genotype to analyse intra-familial transmission. Faecal DNA was extracted and amplified by nested PCR. The products were analysed by direct sequencing and the allele type was determined using an MLST website. Mother-to-child transmission was suspected in at least two of three families, and father-to-child transmission was suspected in one family.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.053140-0
2013-05-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/5/761.html?itemId=/content/journal/jmm/10.1099/jmm.0.053140-0&mimeType=html&fmt=ahah

References

  1. Achtman M., Azuma T., Berg D. E., Ito Y., Morelli G., Pan Z. J., Suerbaum S., Thompson S. A., van der Ende A., van Doorn L. J.. ( 1999;). Recombination and clonal groupings within Helicobacter pylori from different geographical regions. . Mol Microbiol 32:, 459–470. [CrossRef][PubMed]
    [Google Scholar]
  2. Chalmers G., Bruce H. L., Hunter D. B., Parreira V. R., Kulkarni R. R., Jiang Y. F., Prescott J. F., Boerlin P.. ( 2008;). Multilocus sequence typing analysis of Clostridium perfringens isolates from necrotic enteritis outbreaks in broiler chicken populations. . J Clin Microbiol 46:, 3957–3964. [CrossRef][PubMed]
    [Google Scholar]
  3. Falush D., Kraft C., Taylor N. S., Correa P., Fox J. G., Achtman M., Suerbaum S.. ( 2001;). Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. . Proc Natl Acad Sci U S A 98:, 15056–15061. [CrossRef][PubMed]
    [Google Scholar]
  4. Falush D., Wirth T., Linz B., Pritchard J. K., Stephens M., Kidd M., Blaser M. J., Graham D. Y., Vacher S. et al. ( 2003;). Traces of human migrations in Helicobacter pylori populations. . Science 299:, 1582–1585. [CrossRef][PubMed]
    [Google Scholar]
  5. Kennemann L., Didelot X., Aebischer T., Kuhn S., Drescher B., Droege M., Reinhardt R., Correa P., Meyer T. F. et al. ( 2011;). Helicobacter pylori genome evolution during human infection. . Proc Natl Acad Sci U S A 108:, 5033–5038. [CrossRef][PubMed]
    [Google Scholar]
  6. Konno M., Fujii N., Yokota S., Sato K., Takahashi M., Sato K., Mino E., Sugiyama T.. ( 2005;). Five-year follow-up study of mother-to-child transmission of Helicobacter pylori infection detected by a random amplified polymorphic DNA fingerprinting method. . J Clin Microbiol 43:, 2246–2250. [CrossRef][PubMed]
    [Google Scholar]
  7. Konno M., Yokota S., Suga T., Takahashi M., Sato K., Fujii N.. ( 2008;). Predominance of mother-to-child transmission of Helicobacter pylori infection detected by random amplified polymorphic DNA fingerprinting analysis in Japanese families. . Pediatr Infect Dis J 27:, 999–1003. [CrossRef][PubMed]
    [Google Scholar]
  8. Kraft C., Stack A., Josenhans C., Niehus E., Dietrich G., Correa P., Fox J. G., Falush D., Suerbaum S.. ( 2006;). Genomic changes during chronic Helicobacter pylori infection. . J Bacteriol 188:, 249–254. [CrossRef][PubMed]
    [Google Scholar]
  9. Kusters J. G., van Vliet A. H., Kuipers E. J.. ( 2006;). Pathogenesis of Helicobacter pylori infection. . Clin Microbiol Rev 19:, 449–490. [CrossRef][PubMed]
    [Google Scholar]
  10. Linz B., Balloux F., Moodley Y., Manica A., Liu H., Roumagnac P., Falush D., Stamer C., Prugnolle F. et al. ( 2007;). An African origin for the intimate association between humans and Helicobacter pylori.. Nature 445:, 915–918. [CrossRef][PubMed]
    [Google Scholar]
  11. Moodley Y., Linz B., Yamaoka Y., Windsor H. M., Breurec S., Wu J.-Y., Maady A., Bernhöft S., Thiberge J.-M. et al. ( 2009;). The peopling of the Pacific from a bacterial perspective. . Science 323:, 527–530. [CrossRef][PubMed]
    [Google Scholar]
  12. Nahar S., Kibria K. M., Hossain M. E., Sultana J., Sarker S. A., Engstrand L., Bardhan P. K., Rahman M., Endtz H. P.. ( 2009;). Evidence of intra-familial transmission of Helicobacter pylori by PCR-based RAPD fingerprinting in Bangladesh. . Eur J Clin Microbiol Infect Dis 28:, 767–773. [CrossRef][PubMed]
    [Google Scholar]
  13. Osaki T., Hanawa T., Manzoku T., Fukuda M., Kawakami H., Suzuki H., Yamaguchi H., Yan X., Taguchi H. et al. ( 2006;). Mutation of luxS affects motility and infectivity of Helicobacter pylori in gastric mucosa of a Mongolian gerbil model. . J Med Microbiol 55:, 1477–1485. [CrossRef][PubMed]
    [Google Scholar]
  14. Oshio I., Osaki T., Hanawa T., Yonezawa H., Zaman C., Kurata S., Kamiya S.. ( 2009;). Vertical Helicobacter pylori transmission from Mongolian gerbil mothers to pups. . J Med Microbiol 58:, 656–662. [CrossRef][PubMed]
    [Google Scholar]
  15. Raymond J., Thiberg J. M., Chevalier C., Kalach N., Bergeret M., Labigne A., Dauga C.. ( 2004;). Genetic and transmission analysis of Helicobacter pylori strains within a family. . Emerg Infect Dis 10:, 1816–1821. [CrossRef][PubMed]
    [Google Scholar]
  16. Scaletsky I. C., Aranda K. R., Garcia G. T., Gonçalves M. E., Cardoso S. R., Iriya K., Silva N. P.. ( 2011;). Application of real-time PCR stool assay for Helicobacter pylori detection and clarithromycin susceptibility testing in Brazilian children. . Helicobacter 16:, 311–315. [CrossRef][PubMed]
    [Google Scholar]
  17. Shirai M., Kakada J., Shibata K., Morshed M. G., Matsushita T., Nakazawa T.. ( 2000;). Accumulation of polyphosphate granules in Helicobacter pylori cells under anaerobic conditions. . J Med Microbiol 49:, 513–519.[PubMed]
    [Google Scholar]
  18. Staples M., Graham R. M., Doyle C. J., Smith H. V., Jennison A. V.. ( 2012;). Prolonged and mixed non-O157 Escherichia coli infection in an Australian household. . Clin Microbiol Infect 18:, E140–E143. [CrossRef][PubMed]
    [Google Scholar]
  19. Walker A. S., Eyre D. W., Wyllie D. H., Dingle K. E., Harding R. M., O’Connor L., Griffiths D., Vaughan A., Finney J. et al. ( 2012;). Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. . PLoS Med 9:, e1001172. [CrossRef][PubMed]
    [Google Scholar]
  20. Wirth T., Wang X., Linz B., Novick R. P., Lum J. K., Blaser M., Morelli G., Falush D., Achtman M.. ( 2004;). Distinguishing human ethnic groups by means of sequences from Helicobacter pylori: lessons from Ladakh. . Proc Natl Acad Sci U S A 101:, 4746–4751. [CrossRef][PubMed]
    [Google Scholar]
  21. Yamaoka Y.. ( 2009;). Helicobacter pylori typing as a tool for tracking human migration. . Clin Microbiol Infect 15:, 829–834. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.053140-0
Loading
/content/journal/jmm/10.1099/jmm.0.053140-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error