1887

Abstract

type A toxin is the most prevalent cause of naturally occurring outbreaks of human botulism in the world. The active dichain neurotoxin molecule is composed of a heavy chain (H-chain) of ~100 kDa with the carboxy-terminal end consisting of a receptor-binding (H) domain, while the amino-terminal (H) domain is linked by a critical disulfide bond to a light chain (L-chain) of ~50 kDa. Although the mouse bioassay (MBA) is traditionally used to confirm the presence of toxin in serum or food, its sensitivity is insufficient to detect low toxin levels in approximately 30 to 60 % of botulism patients. A novel FDC (functional dual coating) microtitre plate immuno-biochemical assay, which quantifies botulinum toxicity by measuring the H domain linked with L-chain endopeptidase activity, was modified to allow human serum (lysed or unlysed) to be tested without interference from the matrix, with toxin detection down to 0.03 mouse LD per ml serum or 0.13 pg ml using just 100 µl of clinical samples. The assay was specific for type A toxin and could additionally be applied to whole blood and food samples. Low levels of 1 to 2 mouse LD per ml serum of type A toxin were quantified for the first time using the modified FDC assay in two severely intoxicated UK patients who required mechanical ventilation and antitoxin. Toxin levels in recovered food sample extracts were also detected and one MBA-negative sample was found to contain 0.32 LD per ml extract. The FDC assay provides a real alternative for public health laboratories to unambiguously confirm all cases of type A botulism and, due to its sensitivity, a promising new tool in toxin pharmacokinetic studies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.053124-0
2013-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/6/828.html?itemId=/content/journal/jmm/10.1099/jmm.0.053124-0&mimeType=html&fmt=ahah

References

  1. Ahsan C. R., Hajnóczky G., Maksymowych A. B., Simpson L. L.. ( 2005;). Visualization of binding and transcytosis of botulinum toxin by human intestinal epithelial cells. . J Pharmacol Exp Ther 315:, 1028–1035. [CrossRef][PubMed]
    [Google Scholar]
  2. Akbulut D., Grant K. A., McLauchlin J.. ( 2005;). Improvement in laboratory diagnosis of wound botulism and tetanus among injecting illicit-drug users by use of real-time PCR assays for neurotoxin gene fragments. . J Clin Microbiol 43:, 4342–4348. [CrossRef][PubMed]
    [Google Scholar]
  3. ASM (2003). Sentinel Laboratory Guidelines For Suspected Agents of Bioterrorism, Botulinum Toxin. Washington, DC: American Society for Microbiology.
  4. Bagramyan K., Kalkum M.. ( 2011;). Ultrasensitive detection of botulinum neurotoxins and anthrax lethal factor in biological samples by ALISSA. . Methods Mol Biol 739:, 23–36. [CrossRef][PubMed]
    [Google Scholar]
  5. Bagramyan K., Barash J. R., Arnon S. S., Kalkum M.. ( 2008;). Attomolar detection of botulinum toxin type A in complex biological matrices. . PLoS ONE 3:, e2041. [CrossRef][PubMed]
    [Google Scholar]
  6. Behrensdorf-Nicol H. A., Bonifas U., Kegel B., Silberbach K., Krämer B., Weisser K.. ( 2010;). In vitro determination of tetanus toxicity by an endopeptidase assay linked to a ganglioside-binding step. . Toxicol In Vitro 24:, 988–994. [CrossRef][PubMed]
    [Google Scholar]
  7. Bok S., Korampally V., Darr C. M., Folk W. R., Polo-Parada L., Gangopadhyay K., Gangopadhyay S.. ( 2013;). Femtogram-level detection of Clostridium botulinum neurotoxin type A by sandwich immunoassay using nanoporous substrate and ultra-bright fluorescent suprananoparticles. . Biosens Bioelectron 41:, 409–416. [CrossRef][PubMed]
    [Google Scholar]
  8. Browning L. M., Prempeh H., Little C., Houston C., Grant K., Cowden J. M..United Kingdom Botulism Incident Management Team ( 2011;). An outbreak of food-borne botulism in Scotland, United Kingdom, November 2011. . Euro Surveill 16:, 20036.[PubMed]
    [Google Scholar]
  9. Capek P., Dickerson T. J.. ( 2010;). Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. . Toxins (Basel) 2:, 24–53. [CrossRef][PubMed]
    [Google Scholar]
  10. CDC (1998). Botulism in the United States 1899–1996. In Handbook for Epidemiologists, Clinicians, and Laboratory Workers. Altanta, GA: CDC.
  11. Cheng L. W., Land K. M., Stanker L. H.. ( 2012;). Current methods for detecting the presence of botulinum neurotoxins in food and other biological samples. . In Bioterrorism, pp. 1–16. Edited by Morse S... New York:: InTech;.
    [Google Scholar]
  12. Dunning F. M., Ruge D. R., Piazza T. M., Stanker L. H., Zeytin F. N., Tucker W. C.. ( 2012;). Detection of botulinum neurotoxin serotype A, B, and F proteolytic activity in complex matrices with picomolar to femtomolar sensitivity. . Appl Environ Microbiol 78:, 7687–7697. [CrossRef][PubMed]
    [Google Scholar]
  13. Eisele K. H., Fink K., Vey M., Taylor H. V.. ( 2011;). Studies on the dissociation of botulinum neurotoxin type A complexes. . Toxicon 57:, 555–565. [CrossRef][PubMed]
    [Google Scholar]
  14. Evans E. R., Skipper P. J., Shone C. C.. ( 2009;). An assay for botulinum toxin types A, B and F that requires both functional binding and catalytic activities within the neurotoxin. . J Appl Microbiol 107:, 1384–1391. [CrossRef][PubMed]
    [Google Scholar]
  15. Fernández-Salas E., Steward L. E., Ho H., Garay P. E., Sun S. W., Gilmore M. A., Ordas J. V., Wang J., Francis J., Aoki K. R.. ( 2004;). Plasma membrane localization signals in the light chain of botulinum neurotoxin. . Proc Natl Acad Sci U S A 101:, 3208–3213. [CrossRef][PubMed]
    [Google Scholar]
  16. Gu S., Rumpel S., Zhou J., Strotmeier J., Bigalke H., Perry K., Shoemaker C. B., Rummel A., Jin R.. ( 2012;). Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. . Science 335:, 977–981. [CrossRef][PubMed]
    [Google Scholar]
  17. Hallis B., James B. A., Shone C. C.. ( 1996;). Development of novel assays for botulinum type A and B neurotoxins based on their endopeptidase activities. . J Clin Microbiol 34:, 1934–1938.[PubMed]
    [Google Scholar]
  18. Jones R. G. A., Ochiai M., Liu Y., Ekong T., Sesardic D.. ( 2008;). Development of improved SNAP25 endopeptidase immuno-assays for botulinum type A and E toxins. . J Immunol Methods 329:, 92–101. [CrossRef][PubMed]
    [Google Scholar]
  19. Jones R. G. A., Liu Y., Sesardic D.. ( 2009;). New highly specific botulinum type C1 endopeptidase immunoassays utilising SNAP25 or Syntaxin substrates. . J Immunol Methods 343:, 21–27. [CrossRef][PubMed]
    [Google Scholar]
  20. Joshi S. G.. ( 2012;). Detection of biologically active botulinum neurotoxin-A in serum using high-throughput FRET-assay. . J Pharmacol Toxicol Methods 65:, 8–12. [CrossRef][PubMed]
    [Google Scholar]
  21. Lillehoj P. B., Wei F., Ho C. M.. ( 2010;). A self-pumping lab-on-a-chip for rapid detection of botulinum toxin. . Lab Chip 10:, 2265–2270. [CrossRef][PubMed]
    [Google Scholar]
  22. Liu Y. Y. B., Rigsby P., Sesardic D., Marks J. D., Jones R. G. A.. ( 2012;). A functional dual-coated (FDC) microtiter plate method to replace the botulinum toxin LD50 test. . Anal Biochem 425:, 28–35. [CrossRef][PubMed]
    [Google Scholar]
  23. Maksymowych A. B., Simpson L. L.. ( 1998;). Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells. . J Biol Chem 273:, 21950–21957. [CrossRef][PubMed]
    [Google Scholar]
  24. Maksymowych A. B., Reinhard M., Malizio C. J., Goodnough M. C., Johnson E. A., Simpson L. L.. ( 1999;). Pure botulinum neurotoxin is absorbed from the stomach and small intestine and produces peripheral neuromuscular blockade. . Infect Immun 67:, 4708–4712.[PubMed]
    [Google Scholar]
  25. Mason J. T., Xu L., Sheng Z. M., He J., O’Leary T. J.. ( 2006a;). Liposome polymerase chain reaction assay for the sub-attomolar detection of cholera toxin and botulinum neurotoxin type A. . Nat Protoc 1:, 2003–2011. [CrossRef][PubMed]
    [Google Scholar]
  26. Mason J. T., Xu L., Sheng Z. M., O’Leary T. J.. ( 2006b;). A liposome-PCR assay for the ultrasensitive detection of biological toxins. . Nat Biotechnol 24:, 555–557. [CrossRef][PubMed]
    [Google Scholar]
  27. Mazuet C., Ezan E., Volland H., Popoff M. R., Becher F.. ( 2012;). Toxin detection in patients’ sera by mass spectrometry during two outbreaks of type A botulism in France. . J Clin Microbiol 50:, 4091–4094. [CrossRef][PubMed]
    [Google Scholar]
  28. McLauchlin J., Grant K. A., Little C. L.. ( 2006;). Food-borne botulism in the United Kingdom. . J Public Health (Oxf) 28:, 337–342. [CrossRef][PubMed]
    [Google Scholar]
  29. Mushens R. E., Scott M. L.. ( 1990;). A fast and efficient method for quantification of monoclonal antibodies in an ELISA using a novel incubation system. . J Immunol Methods 131:, 83–89. [CrossRef][PubMed]
    [Google Scholar]
  30. Parks B. A., Shearer J. D., Baudys J., Kalb S. R., Sanford D. C., Pirkle J. L., Barr J. R.. ( 2011;). Quantification of botulinum neurotoxin serotypes A and B from serum using mass spectrometry. . Anal Chem 83:, 9047–9053. [CrossRef][PubMed]
    [Google Scholar]
  31. Ravichandran E., Gong Y., Al Saleem F. H., Ancharski D. M., Joshi S. G., Simpson L. L.. ( 2006;). An initial assessment of the systemic pharmacokinetics of botulinum toxin. . J Pharmacol Exp Ther 318:, 1343–1351. [CrossRef][PubMed]
    [Google Scholar]
  32. Razai A., Garcia-Rodriguez C., Lou J., Geren I. N., Forsyth C. M., Robles Y., Tsai R., Smith T. J., Smith L. A.. & other authors ( 2005;). Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. . J Mol Biol 351:, 158–169. [CrossRef][PubMed]
    [Google Scholar]
  33. Rother R. P., Bell L., Hillmen P., Gladwin M. T.. ( 2005;). The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. . JAMA 293:, 1653–1662. [CrossRef][PubMed]
    [Google Scholar]
  34. Rowlands R. E., Ristori C. A., Lopes G. I., Paula A. M., Sakuma H., Grigaliunas R., Lopreato Filho R., Gelli D. S., Eduardo M. B., Jakabi M.. ( 2010;). Botulism in Brazil, 2000-2008: epidemiology, clinical findings and laboratorial diagnosis. . Rev Inst Med Trop Sao Paulo 52:, 183–186.[PubMed]
    [Google Scholar]
  35. Sanford D. C., Barnewall R. E., Vassar M. L., Niemuth N., Metcalfe K., House R. V., Henderson I., Shearer J. D.. ( 2010;). Inhalational botulism in rhesus macaques exposed to botulinum neurotoxin complex serotypes A1 and B1. . Clin Vaccine Immunol 17:, 1293–1304. [CrossRef][PubMed]
    [Google Scholar]
  36. Schiavo G., Matteoli M., Montecucco C.. ( 2000;). Neurotoxins affecting neuroexocytosis. . Physiol Rev 80:, 717–766.[PubMed]
    [Google Scholar]
  37. Sheppard Y. D., Middleton D., Whitfield Y., Tyndel F., Haider S., Spiegelman J., Swartz R. H., Nelder M. P., Baker S. L.. & other authors ( 2012;). Intestinal toxemia botulism in 3 adults, Ontario, Canada, 2006–2008. . Emerg Infect Dis 18:, 1–6. [CrossRef][PubMed]
    [Google Scholar]
  38. Simpson L. L.. ( 2004;). Identification of the major steps in botulinum toxin action. . Annu Rev Pharmacol Toxicol 44:, 167–193. [CrossRef][PubMed]
    [Google Scholar]
  39. Soloman H. M., Lilly T. Jr. ( 2001;). Clostridium botulinum. . In Bacteriological Analytical Manual. Washington, DC:: US Food and Drug Administration;.
    [Google Scholar]
  40. Susuki K., Takahashi H., Yuki N., Ohsawa H., Hirata K., Sakata I.. ( 2001;). Guillain–Barré syndrome mimicking botulism. . J Neurol 248:, 720–721. [CrossRef][PubMed]
    [Google Scholar]
  41. Tang-Liu D. D., Aoki K. R., Dolly J. O., de Paiva A., Houchen T. L., Chasseaud L. F., Webber C.. ( 2003;). Intramuscular injection of 125I-botulinum neurotoxin-complex versus 125I-botulinum-free neurotoxin: time course of tissue distribution. . Toxicon 42:, 461–469. [CrossRef][PubMed]
    [Google Scholar]
  42. van den Berg L. H., Oey P. L., Wokke J. H., Veldman H., Wieneke G. H., Notermans S. H.. ( 1994;). Features of the Guillain–Barré syndrome in mice following intraperitoneal injection of patient serum. . J Neurol Sci 127:, 103–106. [CrossRef][PubMed]
    [Google Scholar]
  43. Vanella de Cuetos E. E., Fernandez R. A., Bianco M. I., Sartori O. J., Piovano M. L., Lúquez C., de Jong L. I.. ( 2011;). Equine botulinum antitoxin for the treatment of infant botulism. . Clin Vaccine Immunol 18:, 1845–1849. [CrossRef][PubMed]
    [Google Scholar]
  44. Vossen M. G., Gattringer K. B., Wenisch J., Khalifeh N., Koreny M., Spertini V., Allerberger F., Graninger W., Kornschober C.. & other authors ( 2012;). The first case(s) of botulism in Vienna in 21 years: a case report. . Case Rep Infect Dis 2012:, 438989.[PubMed]
    [Google Scholar]
  45. Wagener F. A. D. T. G., Eggert A., Boerman O. C., Oyen W. J., Verhofstad A., Abraham N. G., Adema G., van Kooyk Y., de Witte T., Figdor C. G.. ( 2001;). Heme is a potent inducer of inflammation in mice and is counteracted by heme oxygenase. . Blood 98:, 1802–1811. [CrossRef][PubMed]
    [Google Scholar]
  46. Weingart O. G., Gao H., Crevoisier F., Heitger F., Avondet M. A., Sigrist H.. ( 2012;). A bioanalytical platform for simultaneous detection and quantification of biological toxins. . Sensors (Basel) 12:, 2324–2339. [CrossRef][PubMed]
    [Google Scholar]
  47. Wheeler C., Inami G., Mohle-Boetani J., Vugia D.. ( 2009;). Sensitivity of mouse bioassay in clinical wound botulism. . Clin Infect Dis 48:, 1669–1673. [CrossRef][PubMed]
    [Google Scholar]
  48. Wilder-Kofie T. D., Lúquez C., Adler M., Dykes J. K., Coleman J. D., Maslanka S. E.. ( 2011;). An alternative in vivo method to refine the mouse bioassay for botulinum toxin detection. . Comp Med 61:, 235–242.[PubMed]
    [Google Scholar]
  49. Woodruff B. A., Griffin P. M., McCroskey L. M., Smart J. F., Wainwright R. B., Bryant R. G., Hutwagner L. C., Hatheway C. L.. ( 1992;). Clinical and laboratory comparison of botulism from toxin types A, B, and E in the United States, 1975–1988. . J Infect Dis 166:, 1281–1286. [CrossRef][PubMed]
    [Google Scholar]
  50. Zhang Y., Lou J., Jenko K. L., Marks J. D., Varnum S. M.. ( 2012;). Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays. . Anal Biochem 430:, 185–192. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.053124-0
Loading
/content/journal/jmm/10.1099/jmm.0.053124-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error