1887

Abstract

The Cobas TaqMan MTB assay is a real-time PCR (qPCR) kit for rapid detection of from clinical specimens. There are, however, limited studies validating its performance. We performed a prospective study in two hospitals in Taiwan on 586 respiratory specimens. By using culture as the reference method, the sensitivity and specificity of the Cobas TaqMan MTB assay were found to be 82.7 and 96.5 %, respectively. The sensitivity of the Cobas TaqMan MTB assay in acid-fast stain-negative respiratory specimens was only 34.9 %. Five specimens from five patients were positive for by the Cobas TaqMan MTB assay but were negative for by conventional culture methods. A diagnosis of pulmonary tuberculosis (TB) was made based on clinical and radiological findings as well as the response to anti-TB treatment in these five patients. Addition of data from these five specimens with discrepant results (PCR vs culture) from patients with symptoms clinically compatible with TB increased the sensitivity of the Cobas TaqMan MTB assay to 83.1 %. The Cobas TaqMan MTB assay is a rapid identification tool with a high degree of specificity for the direct detection of in respiratory specimens. The sensitivity for detecting acid-fast smear-negative respiratory specimens, however, is low.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.052043-0
2013-08-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/8/1160.html?itemId=/content/journal/jmm/10.1099/jmm.0.052043-0&mimeType=html&fmt=ahah

References

  1. Aono A., Azuma Y., Mitarai S., Ogata H.. ( 2009;). Rapid prediction of BACTEC MGIT 960 culture results by COBAS Amplicor Mycobacterium polymerase chain reaction detection. . Diagn Microbiol Infect Dis 64:, 27–30. [CrossRef][PubMed]
    [Google Scholar]
  2. Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M. W.. & other authors ( 2009;). The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. . Clin Chem 55:, 611–622. [CrossRef][PubMed]
    [Google Scholar]
  3. Bustin S. A., Beaulieu J. F., Huggett J., Jaggi R., Kibenge F. S., Olsvik P. A., Penning L. C., Toegel S.. ( 2010;). MIQE précis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. . BMC Mol Biol 11:, 74. [CrossRef][PubMed]
    [Google Scholar]
  4. Causse M., Ruiz P., Gutiérrez-Aroca J. B., Casal M.. ( 2011;). Comparison of two molecular methods for rapid diagnosis of extrapulmonary tuberculosis. . J Clin Microbiol 49:, 3065–3067. [CrossRef][PubMed]
    [Google Scholar]
  5. Chandran S. P., Kenneth J.. ( 2010;). Evaluation of COBAS TaqMan real time PCR assay for the diagnosis of Mycobacterium tuberculosis. . Indian J Med Res 132:, 100–102.[PubMed]
    [Google Scholar]
  6. Chang K., Lu W., Wang J., Zhang K., Jia S., Li F., Deng S., Chen M.. ( 2012;). Rapid and effective diagnosis of tuberculosis and rifampicin resistance with Xpert MTB/RIF assay: a meta-analysis. . J Infect 64:, 580–588. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen X., Yang Q., Kong H., Chen Y.. ( 2012;). Real-time PCR and Amplified MTD® for rapid detection of Mycobacterium tuberculosis in pulmonary specimens. . Int J Tuberc Lung Dis 16:, 235–239. [CrossRef][PubMed]
    [Google Scholar]
  8. Cho S. Y., Kim M. J., Suh J. T., Lee H. J.. ( 2011;). Comparison of diagnostic performance of three real-time PCR kits for detecting Mycobacterium species. . Yonsei Med J 52:, 301–306. [CrossRef][PubMed]
    [Google Scholar]
  9. Cui Z., Wang Y., Fang L., Zheng R., Huang X., Liu X., Zhang G., Rui D., Ju J., Hu Z.. ( 2012;). Novel real-time simultaneous amplification and testing method to accurately and rapidly detect Mycobacterium tuberculosis complex. . J Clin Microbiol 50:, 646–650. [CrossRef][PubMed]
    [Google Scholar]
  10. Gous N., Scott L. E., Wong E., Omar T., Venter W. D., Stevens W.. ( 2012;). Performance of the Roche LightCycler real-time PCR assay for diagnosing extrapulmonary tuberculosis. . J Clin Microbiol 50:, 2100–2103. [CrossRef][PubMed]
    [Google Scholar]
  11. Griffith D. E., Aksamit T., Brown-Elliott B. A., Catanzaro A., Daley C., Gordin F., Holland S. M., Horsburgh R., Huitt G.. & other authors ( 2007;). An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. . Am J Respir Crit Care Med 175:, 367–416. [Erratum: Am J Respir Crit Care Med 2007; 175:, 744–745.] [CrossRef][PubMed]
    [Google Scholar]
  12. Kim S. Y., Park Y. J., Kang S. J., Kim B. K., Kang C. S.. ( 2004;). Comparison of the BDProbeTec ET system with the roche COBAS AMPLICOR System for detection of Mycobacterium tuberculosis complex in the respiratory and pleural fluid specimens. . Diagn Microbiol Infect Dis 49:, 13–18. [CrossRef][PubMed]
    [Google Scholar]
  13. Kim J. H., Kim Y. J., Ki C. S., Kim J. Y., Lee N. Y.. ( 2011;). Evaluation of Cobas TaqMan MTB PCR for detection of Mycobacterium tuberculosis. . J Clin Microbiol 49:, 173–176. [CrossRef][PubMed]
    [Google Scholar]
  14. Kocagöz T., Altın S., Türkyılmaz Ö., Taş İ., Karaduman P., Bolaban D., Yeşilyurt E., Öktem S., Aytekin N.. & other authors ( 2012;). Efficiency of the TK Culture System in the diagnosis of tuberculosis. . Diagn Microbiol Infect Dis 72:, 350–357. [CrossRef][PubMed]
    [Google Scholar]
  15. Lai C. C., Tan C. K., Chou C. H., Hsu H. L., Liao C. H., Huang Y. T., Yang P. C., Luh K. T., Hsueh P. R.. ( 2010;). Increasing incidence of nontuberculous mycobacteria, Taiwan, 2000–2008. . Emerg Infect Dis 16:, 294–296. [CrossRef][PubMed]
    [Google Scholar]
  16. Lai C. C., Tan C. K., Lin S. H., Liao C. H., Huang Y. T., Hsueh P. R.. ( 2011;). Diagnostic performance of whole-blood interferon-γ assay and enzyme-linked immunospot assay for active tuberculosis. . Diagn Microbiol Infect Dis 71:, 139–143. [CrossRef][PubMed]
    [Google Scholar]
  17. Lee M. R., Keng L. T., Shu C. C., Lee S. W., Lee C. H., Wang J. Y., Lee L. N., Yu C. J., Yang P. C.. ( 2012a;). Risk factors for Mycobacterium chelonae-abscessus pulmonary disease persistence and deterioration. . J Infect 64:, 228–230. [CrossRef][PubMed]
    [Google Scholar]
  18. Lee M. R., Chung K. P., Chen W. T., Huang Y. T., Lee L. N., Yu C. J., Teng L. J., Hsueh P. R., Yang P. C., Luh K. T.. ( 2012b;). Epidemiologic surveillance to detect false-positive Mycobacterium tuberculosis cultures. . Diagn Microbiol Infect Dis 73:, 343–349. [CrossRef][PubMed]
    [Google Scholar]
  19. Lin C. B., Chou H. W., Lin W. C., Lin T. Y., Lin T. P., Luh K. T., Lee J. J.. ( 2011;). Is it appropriate to routinely use a nucleic acid amplification test for the diagnosis of tuberculosis?. Kaohsiung J Med Sci 27:, 138–143. [CrossRef][PubMed]
    [Google Scholar]
  20. Malbruny B., Le Marrec G., Courageux K., Leclercq R., Cattoir V.. ( 2011;). Rapid and efficient detection of Mycobacterium tuberculosis in respiratory and non-respiratory samples. . Int J Tuberc Lung Dis 15:, 553–555. [CrossRef][PubMed]
    [Google Scholar]
  21. Michos A. G., Daikos G. L., Tzanetou K., Theodoridou M., Moschovi M., Nicolaidou P., Petrikkos G., Syriopoulos T., Kanavaki S., Syriopoulou V. P.. ( 2006;). Detection of Mycobacterium tuberculosis DNA in respiratory and nonrespiratory specimens by the Amplicor MTB PCR. . Diagn Microbiol Infect Dis 54:, 121–126. [CrossRef][PubMed]
    [Google Scholar]
  22. Miller M. B., Popowitch E. B., Backlund M. G., Ager E. P.. ( 2011;). Performance of Xpert MTB/RIF RUO assay and IS6110 real-time PCR for Mycobacterium tuberculosis detection in clinical samples. . J Clin Microbiol 49:, 3458–3462. [CrossRef][PubMed]
    [Google Scholar]
  23. Reischl U., Lehn N., Wolf H., Naumann L.. ( 1998;). Clinical evaluation of the automated COBAS AMPLICOR MTB assay for testing respiratory and nonrespiratory specimens. . J Clin Microbiol 36:, 2853–2860.[PubMed]
    [Google Scholar]
  24. Wang J. Y., Lee L. N., Chou C. S., Huang C. Y., Wang S. K., Lai H. C., Hsueh P. R., Luh K. T.. ( 2004;). Performance assessment of a nested-PCR assay (the RAPID BAP-MTB) and the BD ProbeTec ET system for detection of Mycobacterium tuberculosis in clinical specimens. . J Clin Microbiol 42:, 4599–4603. [CrossRef][PubMed]
    [Google Scholar]
  25. Wang J. Y., Lee L. N., Hsu H. L., Hsueh P. R., Luh K. T.. ( 2006;). Performance assessment of the DR. MTBC Screen assay and the BD ProbeTec ET system for direct detection of Mycobacterium tuberculosis in respiratory specimens. . J Clin Microbiol 44:, 716–719. [CrossRef][PubMed]
    [Google Scholar]
  26. Wang J. Y., Lee L. N., Lai H. C., Hsu H. L., Jan I. S., Yu C. J., Hsueh P. R., Yang P. C.. ( 2007;). Performance assessment of the Capilia TB assay and the BD ProbeTec ET system for rapid culture confirmation of Mycobacterium tuberculosis. . Diagn Microbiol Infect Dis 59:, 395–399. [CrossRef][PubMed]
    [Google Scholar]
  27. Wright A., Zignol M., Van Deun A., Falzon D., Gerdes S. R., Feldman K., Hoffner S., Drobniewski F., Barrera L.. & other authors ( 2009;). Epidemiology of antituberculosis drug resistance 2002–07: an updated analysis of the Global Project on Anti-Tuberculosis Drug Resistance Surveillance. . Lancet 373:, 1861–1873. [CrossRef][PubMed]
    [Google Scholar]
  28. Yang Y. C., Lu P. L., Huang S. C., Jenh Y. S., Jou R., Chang T. C.. ( 2011;). Evaluation of the Cobas TaqMan MTB test for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. . J Clin Microbiol 49:, 797–801. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.052043-0
Loading
/content/journal/jmm/10.1099/jmm.0.052043-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error