1887

Abstract

Bacteria have a tendency to be gregarious by nature. Whether on abiotic surfaces in the environment or on the mucosal surfaces of humans, bacteria accumulate in complex multi-species communities. In these dynamic accretions, bacteria can be densely packed and often depend on each other for the provision of metabolic substrates. Under these circumstances, it will be advantageous for bacteria to be able to detect the presence of their neighbours, to communicate with them and to co-ordinate various physiological activities. Such cellcell sensing and communication systems can be established through the release and detection of chemical signalling molecules. While originally considered a feature characteristic of eukaryotes, the exchange of chemical signals has now been demonstrated in many bacterial species and ecosystems. Indeed, it has even been suggested that assemblages of bacterial species can be considered as proto-multicellular organisms, whereby biological processes are controlled for the benefit of the entire community. Regardless of the extent to which bacterial communication represents a step on the road to multicellularity, it is becoming increasingly apparent that the signalling systems devised by bacteria are essential for successful relationships with other bacteria and with eukaryotic hosts.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05128-0
2003-07-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/7/JM520702.html?itemId=/content/journal/jmm/10.1099/jmm.0.05128-0&mimeType=html&fmt=ahah

References

  1. Bassler, B. L., Wright, M., Showalter, R. E. & Silverman, M. R. ( 1993;). Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol 9, 773–786.[CrossRef]
    [Google Scholar]
  2. Bassler, B. L., Wright, M. & Silverman, M. R. ( 1994;). Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol 13, 273–286.[CrossRef]
    [Google Scholar]
  3. Beeston, A. L. & Surette, M. G. ( 2002;). pfs-dependent regulation of autoinducer 2 production in Salmonella enterica serovar Typhimurium. J Bacteriol 184, 3450–3456.[CrossRef]
    [Google Scholar]
  4. Burgess, N. A., Kirke, D. F., Williams, P., Winzer, K., Hardie, K. R., Meyers, N. L., Aduse-Opoku, J., Curtis, M. A. & Cámara, M. ( 2002;). LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology 148, 763–772.
    [Google Scholar]
  5. Chatterjee, J., Miyamoto, C. M., Zouzoulas, A., Lang, B. F., Skouris, N. & Meighen, E. A. ( 2002;). MetR and CRP bind to the Vibrio harveyi lux promoters and regulate luminescence. Mol Microbiol 46, 101–111.[CrossRef]
    [Google Scholar]
  6. Chen, X., Schauder, S., Potier, N., Van Dorsselaer, A., Pelczer, I., Bassler, B. L. & Hughson, F. M. ( 2002;). Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415, 545–549.[CrossRef]
    [Google Scholar]
  7. Chung, W. O., Park, Y., Lamont, R. J., McNab, R., Barbieri, B. & Demuth, D. R. ( 2001;). Signaling system in Porphyromonas gingivalis based on a LuxS protein. J Bacteriol 183, 3903–3909.[CrossRef]
    [Google Scholar]
  8. Claverys, J. P., Prudhomme, M., Mortier-Barriere, I. & Martin, B. ( 2000;). Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity? Mol Microbiol 35, 251–259.[CrossRef]
    [Google Scholar]
  9. Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W. & Greenberg, E. P. ( 1998;). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298.[CrossRef]
    [Google Scholar]
  10. Day, W. A., Jr & Maurelli, A. T. ( 2001;). Shigella flexneri LuxS quorum-sensing system modulates virB expression but is not essential for virulence. Infect Immun 69, 15–23.[CrossRef]
    [Google Scholar]
  11. DeLisa, M. P., Wu, C. F., Wang, L., Valdes, J. J. & Bentley, W. E. ( 2001;). DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J Bacteriol 183, 5239–5247.[CrossRef]
    [Google Scholar]
  12. Dunny, G. M. & Leonard, B. A. ( 1997;). Cell–cell communication in gram-positive bacteria. Annu Rev Microbiol 51, 527–564.[CrossRef]
    [Google Scholar]
  13. Fong, K. P., Chung, W. O., Lamont, R. J. & Demuth, D. R. ( 2001;). Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect Immun 69, 7625–7634.[CrossRef]
    [Google Scholar]
  14. Freeman, J. A. & Bassler, B. L. ( 1999a;). A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi. Mol Microbiol 31, 665–677.[CrossRef]
    [Google Scholar]
  15. Freeman, J. A. & Bassler, B. L. ( 1999b;). Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. J Bacteriol 181, 899–906.
    [Google Scholar]
  16. Fuqua, C., Parsek, M. R. & Greenberg, E. P. ( 2001;). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35, 439–468.[CrossRef]
    [Google Scholar]
  17. Grossman, A. D. ( 1995;). Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet 29, 477–508.[CrossRef]
    [Google Scholar]
  18. Kjelleberg, S. & Molin, S. ( 2002;). Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5, 254–258.[CrossRef]
    [Google Scholar]
  19. Lyon, W. R., Madden, J. C., Levin, J. C., Stein, J. L. & Caparon, M. G. ( 2001;). Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol Microbiol 42, 145–157.
    [Google Scholar]
  20. McNab, R., Ford, S. K., El-Sabaeny, A., Barbieri, B., Cook, G. S. & Lamont, R. J. ( 2003;). LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol 185, 274–284.[CrossRef]
    [Google Scholar]
  21. Miller, M. B. & Bassler, B. L. ( 2001;). Quorum sensing in bacteria. Annu Rev Microbiol 55, 165–199.[CrossRef]
    [Google Scholar]
  22. Morrison, D. A. & Lee, M. S. ( 2000;). Regulation of competence for genetic transformation in Streptococcus pneumoniae: a link between quorum sensing and DNA processing genes. Res Microbiol 151, 445–451.[CrossRef]
    [Google Scholar]
  23. Ohtani, K., Hayashi, H. & Shimizu, T. ( 2002;). The luxS gene is involved in cell–cell signalling for toxin production in Clostridium perfringens. Mol Microbiol 44, 171–179.[CrossRef]
    [Google Scholar]
  24. Parsek, M. R. & Greenberg, E. P. ( 2000;). Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A 97, 8789–8793.[CrossRef]
    [Google Scholar]
  25. Purevdorj, B., Costerton, J. W. & Stoodley, P. ( 2002;). Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68, 4457–4464.[CrossRef]
    [Google Scholar]
  26. Schauder, S. & Bassler, B. L. ( 2001;). The languages of bacteria. Genes Dev 15, 1468–1480.[CrossRef]
    [Google Scholar]
  27. Schauder, S., Shokat, K., Surette, M. G. & Bassler, B. L. ( 2001;). The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol 41, 463–476.[CrossRef]
    [Google Scholar]
  28. Sperandio, V., Mellies, J. L., Nguyen, W., Shin, S. & Kaper, J. B. ( 1999;). Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A 96, 15196–15201.[CrossRef]
    [Google Scholar]
  29. Sperandio, V., Torres, A. G., Giron, J. A. & Kaper, J. B. ( 2001;). Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157 : H7. J Bacteriol 183, 5187–5197.[CrossRef]
    [Google Scholar]
  30. Surette, M. G. & Bassler, B. L. ( 1999;). Regulation of autoinducer production in Salmonella typhimurium. Mol Microbiol 31, 585–595.[CrossRef]
    [Google Scholar]
  31. Surette, M. G., Miller, M. B. & Bassler, B. L. ( 1999;). Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc Natl Acad Sci U S A 96, 1639–1644.[CrossRef]
    [Google Scholar]
  32. Wen, Z. T. & Burne, R. A. ( 2002;). Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl Environ Microbiol 68, 1196–1203.[CrossRef]
    [Google Scholar]
  33. Winzer, K., Hardie, K. R. & Williams, P. ( 2002a;). Bacterial cell-to-cell communication: sorry, can't talk now – gone to lunch! Curr Opin Microbiol 5, 216–222.[CrossRef]
    [Google Scholar]
  34. Winzer, K., Hardie, K. R., Burgess, N. & 8 other authors ( 2002b;). LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology 148, 909–922.
    [Google Scholar]
  35. Winzer, K., Sun, Y. H., Green, A., Delory, M., Blackley, D., Hardie, K. R., Baldwin, T. J. & Tang, C. M. ( 2002c;). Role of Neisseria meningitidis luxS in cell-to-cell signaling and bacteremic infection. Infect Immun 70, 2245–2248.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05128-0
Loading
/content/journal/jmm/10.1099/jmm.0.05128-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error