1887

Abstract

The complex comprises a group of nine closely related species that have emerged as life-threatening pulmonary pathogens in immunocompromised patients, particularly individuals with cystic fibrosis or chronic granulomatous disease. Attempts to explain the genomic plasticity, adaptability and virulence of the complex have paid little attention to bacteriophages, particularly the potential contribution of lysogenic conversion and transduction. In this study, lysogeny was observed in 10 of 20 representative strains of the complex. Three temperate phages and five lytic phages isolated from soils, river sediments or the plant rhizosphere were chosen for further study. Six phages exhibited T-even morphology and two were lambda-like. The host range of individual phages, when tested against 66 strains of the complex and a representative panel of other pseudomonads, was not species-specific within the complex and, in some phages, included and . These new data indicate a potential role for phages of the complex in the evolution of these soil bacteria as pathogens of plants, humans and animals, and as novel therapeutic agents.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05099-0
2003-06-01
2019-11-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/6/JM520607.html?itemId=/content/journal/jmm/10.1099/jmm.0.05099-0&mimeType=html&fmt=ahah

References

  1. Agodi, A., Mahenthiralingam, E., Barchitta, M., Gianninò, V., Sciacca, A. & Stefani, S. ( 2001;). Burkholderia cepacia complex infection in Italian patients with cystic fibrosis: prevalence, epidemiology, and genomovar status. J Clin Microbiol 39, 2891–2896.[CrossRef]
    [Google Scholar]
  2. Allison, G. E. & Verma, N. K. ( 2000;). Serotype-converting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol 8, 17–23.[CrossRef]
    [Google Scholar]
  3. Aris, R. M., Routh, J. C., LiPuma, J. J., Heath, D. G. & Gilligan, P. H. ( 2001;). Lung transplantation for cystic fibrosis patients with Burkholderia cepacia complex.Survival linked to genomovar type. Am J Respir Crit Care Med 164, 2102–2106.[CrossRef]
    [Google Scholar]
  4. Berriatua, E., Ziluaga, I., Miguel-Virto, C., Uribarren, P., Juste, R., Laevens, S., Vandamme, P. & Govan, J. R. W. ( 2001;). Outbreak of subclinical mastitis in a flock of dairy sheep associated with Burkholderia cepacia complex infection. J Clin Microbiol 39, 990–994.[CrossRef]
    [Google Scholar]
  5. Bevivino, A., Dalmastri, C., Tabacchioni, S., Chiarini, L., Belli, M. L., Piana, S., Materazzo, A., Vandamme, P. & Manno, G. ( 2002;). Burkholderia cepacia complex bacteria from clinical and environmental sources in Italy: genomovar status and distribution of traits related to virulence and transmissibility. J Clin Microbiol 40, 846–851.[CrossRef]
    [Google Scholar]
  6. Butler, S. L., Doherty, C. J., Hughes, J. E., Nelson, J. W. & Govan, J. R. W. ( 1995;). Burkholderia cepacia and cystic fibrosis: do natural environments present a potential hazard? J Clin Microbiol 33, 1001–1004.
    [Google Scholar]
  7. Cihlar, R. L., Lessie, T. G. & Holt, S. C. ( 1978;). Characterization of bacteriophage CP1, an organic solvent sensitive phage associated with Pseudomonas cepacia. Can J Microbiol 24, 1404–1412.[CrossRef]
    [Google Scholar]
  8. Coenye, T., Vandamme, P., Govan, J. R. W. & LiPuma, J. J. ( 2001;). Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39, 3427–3436.[CrossRef]
    [Google Scholar]
  9. Environmental Protection Agency ( 2002;). Burkholderia cepacia complex: proposed significant new use rule. Fed Regist 67, 1179–1186.
    [Google Scholar]
  10. Fisher, M. C., LiPuma, J. J., Dasen, S. E., Caputo, G. C., Mortensen, J. E., McGowan, K. L. & Stull, T. L. ( 1993;). Source of Pseudomonas cepacia: ribotyping of isolates from patients and from the environment. J Pediatr 123, 745–747.[CrossRef]
    [Google Scholar]
  11. Govan, J. R. W. & Harris, G. ( 1985;). Typing of Pseudomonas cepacia by bacteriocin susceptibility and production. J Clin Microbiol 22, 490–494.
    [Google Scholar]
  12. Govan, J. R. W. & Vandamme, P. ( 1998;). Agricultural and medical microbiology: a time for bridging gaps. Microbiology 144, 2373–2375.[CrossRef]
    [Google Scholar]
  13. Govan, J. R. W., Hughes, J. E. & Vandamme, P. ( 1996;). Burkholderia cepacia: medical, taxonomic and ecological issues. J Med Microbiol 45, 395–407.[CrossRef]
    [Google Scholar]
  14. Govan, J. R. W., Balandreau, J. & Vandamme, P. ( 2000;). Burkholderia cepacia – friend and foe. ASM News 66, 124–125.
    [Google Scholar]
  15. Gutmann, L., Agarwal, M., Arthur, M., Campanelli, C. & Goldstein, R. ( 1990;). A phasmid shuttle vector for the cloning of complex operons in Salmonella. Plasmid 23, 42–58.[CrossRef]
    [Google Scholar]
  16. Hancock, R. E. W. ( 1997;). Peptide antibiotics. Lancet 349, 418–422.[CrossRef]
    [Google Scholar]
  17. Holloway, B. W., Egan, J. B. & Monk, M. ( 1960;). Lysogeny in Pseudomonas aeruginosa. Aust J Exp Biol Med Sci 38, 321–329.[CrossRef]
    [Google Scholar]
  18. Holmes, A., Govan, J. & Goldstein, R. ( 1998;). Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg Infect Dis 4, 221–227.[CrossRef]
    [Google Scholar]
  19. Holmes, A., Nolan, R., Taylor, R., Finley, R., Riley, M., Jiang, R.-Z., Steinbach, S. & Goldstein, R. ( 1999;). An epidemic of Burkholderia cepacia transmitted between patients with and without cystic fibrosis. J Infect Dis 179, 1197–1205.[CrossRef]
    [Google Scholar]
  20. Hughes, J. E, Stewart, J., Barclay, G. R. & Govan, J. R. W. ( 1997;). Priming of neutrophil respiratory burst activity by lipopolysaccharide from Burkholderia cepacia. Infect Immun 65, 4281–4287.
    [Google Scholar]
  21. Jones, A. M., Dodd, M. E. & Webb, A. K. ( 2001;). Burkholderia cepacia: current clinical issues, environmental controversies and ethical dilemmas. Eur Respir J 17, 295–301.[CrossRef]
    [Google Scholar]
  22. Kenna, D. T., Barcus, V. A., Langley, R. J., Vandamme, P. & Govan, J. R. W. ( 2003;). Lack of correlation between O-serotype, bacteriophage susceptibility and genomovar status in the Burkholderia cepacia complex. FEMS Immunol Med Microbiol 35, 87–92.[CrossRef]
    [Google Scholar]
  23. Lessie, T. G., Hendrickson, W., Manning, B. D. & Devereux, R. ( 1996;). Genomic complexity and plasticity of Burkholderia cepacia. FEMS Microbiol Lett 144, 117–128.[CrossRef]
    [Google Scholar]
  24. Lewin, C., Doherty, C. & Govan, J. ( 1993;). In vitro activities of meropenem, PD 127391, PD 131628, ceftazidime, chloramphenicol, cotrimoxazole, and ciprofloxacin against Pseudomonas cepacia. Antimicrob Agents Chemother 37, 123–125.[CrossRef]
    [Google Scholar]
  25. LiPuma, J. J. ( 1998;). Burkholderia cepacia.Management issues and new insights. Clin Chest Med 19, 473–486.[CrossRef]
    [Google Scholar]
  26. LiPuma, J. J. & Mahenthiralingam, E. ( 1999;). Commercial use of Burkholderia cepacia. Emerg Infect Dis 5, 305–306.[CrossRef]
    [Google Scholar]
  27. LiPuma, J. J., Mahenthiralingam, E., Mark, G. L. & Gonzalez, C. F. ( 2000;). Isolation of soil-borne genomovar III Burkholderia cepacia and lytic phages with interspecies host range. Pediatr Pulmonol S20, 288–289 (abstract).
    [Google Scholar]
  28. LiPuma, J. J., Spilker, T., Gill, L. H., Campbell, P. W., III, Liu, L. & Mahenthiralingam, E. ( 2001;). Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. Am J Respir Crit Care Med 164, 92–96.[CrossRef]
    [Google Scholar]
  29. Mack, K. & Titball, R. W. ( 1998;). The detection of insertion sequences within the human pathogen Burkholderia pseudomallei which have been identified previously in Burkholderia cepacia. FEMS Microbiol Lett 162, 69–74.[CrossRef]
    [Google Scholar]
  30. Mahenthiralingam, E., Coenye, T., Chung, J. W., Speert, D. P., Govan, J. R. W., Taylor, P. & Vandamme, P. ( 2000a;). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38, 910–913.
    [Google Scholar]
  31. Mahenthiralingam, E., Bischof, J., Byrne, S. K., Radomski, C., Davies, J. E., Av-Gay, Y. & Vandamme, P. ( 2000b;). DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38, 3165–3173.
    [Google Scholar]
  32. Mahenthiralingam, E., Baldwin, A. & Vandamme, P. ( 2002;). Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol 51, 533–538.
    [Google Scholar]
  33. Matsumoto, H., Itoh, Y., Ohta, S. & Terawaki, Y. ( 1986;). A generalized transducing phage of Pseudomonas cepacia. J Gen Microbiol 132, 2583–2586.
    [Google Scholar]
  34. Nzula, S., Vandamme, P. & Govan, J. R. W. ( 2000;). Sensitivity of the Burkholderia cepacia complex and Pseudomonas aeruginosa to transducing bacteriophages. FEMS Immunol Med Microbiol 28, 307–312.[CrossRef]
    [Google Scholar]
  35. Nzula, S., Vandamme, P. & Govan, J. R. W. ( 2002;). Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J Antimicrob Chemother 50, 265–269.[CrossRef]
    [Google Scholar]
  36. Parke, J. L. & Gurian-Sherman, D. ( 2001;). Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39, 225–258.[CrossRef]
    [Google Scholar]
  37. Pirisi, A. ( 2000;). Phage therapy – advantages over antibiotics? Lancet 356, 1418. 1418.[CrossRef]
    [Google Scholar]
  38. Pitt, T. L., Kaufmann, M. E., Patel, P. S., Benge, L. C. A., Gaskin, S. & Livermore, D. M. ( 1996;). Type characterisation and antibiotic susceptibility of Burkholderia (Pseudomonas) cepacia isolates from patients with cystic fibrosis in the United Kingdom and the Republic of Ireland. J Med Microbiol 44, 203–210.[CrossRef]
    [Google Scholar]
  39. Schuch, R., Nelson, D. & Fischetti, V. A. ( 2002;). A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418, 884–889.[CrossRef]
    [Google Scholar]
  40. Schulin, T. & Steinmetz, I. ( 2001;). Chronic melioidosis in a patient with cystic fibrosis. J Clin Microbiol 39, 1676–1677.[CrossRef]
    [Google Scholar]
  41. Shaw, D., Poxton, I. R. & Govan, J. R. W. ( 1995;). Biological activity of Burkholderia (Pseudomonas) cepacia lipopolysaccharide. FEMS Immunol Med Microbiol 11, 99–106.[CrossRef]
    [Google Scholar]
  42. Speert, D. P., Henry, D., Vandamme, P., Corey, M. & Mahenthiralingam, E. ( 2002;). Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg Infect Dis 8, 181–187.[CrossRef]
    [Google Scholar]
  43. Sulakvelidze, A., Alavidze, Z. & Morris, J. G., Jr ( 2001;). Bacteriophage therapy. Antimicrob Agents Chemother 45, 649–659.[CrossRef]
    [Google Scholar]
  44. Vandamme, P., Holmes, B., Vancanneyt, M. & 8 other authors ( 1997;). Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp.nov. Int J Syst Bacteriol 47, 1188–1200.[CrossRef]
    [Google Scholar]
  45. Vandamme, P., Holmes, B., Coenye, T., Goris, J., Mahenthiralingam, E., LiPuma, J. J. & Govan, J. R. W. ( 2003;). Burkholderia cenocepacia sp.nov. – a new twist to an old story. Res Microbiol 154, 91–96.[CrossRef]
    [Google Scholar]
  46. Vermis, K., Vandekerckhove, C., Nelis, H. J. & Vandamme, P. A. R. ( 2002;). Evaluation of restriction fragment length polymorphism analysis of 16S rDNA as a tool for genomovar characterisation within the Burkholderia cepacia complex. FEMS Microbiol Lett 214, 1–5.[CrossRef]
    [Google Scholar]
  47. Visca, P., Cazzola, G., Petrucca, A. & Braggion, C. ( 2001;). Travel-associated Burkholderia pseudomallei infection (melioidosis) in a patient with cystic fibrosis: a case report. Clin Infect Dis 32, E15–E16.[CrossRef]
    [Google Scholar]
  48. Weiss, B. D., Capage, M. A., Kessel, M. & Benson, S. A. ( 1994;). Isolation and characterization of a generalized transducing phage for Xanthomonas campestris pv.campestris. J Bacteriol 176, 3354–3359.
    [Google Scholar]
  49. Wigley, P. & Burton, N. F. ( 2000;). Multiple chromosomes in Burkholderia cepacia and B.gladioli and their distribution in clinical and environmental strains of B. cepacia. J Appl Microbiol 88, 914–918.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05099-0
Loading
/content/journal/jmm/10.1099/jmm.0.05099-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error