1887

Abstract

We examined the molecular characteristics of 13 phenotypically confirmed carbapenemase-positive clinical isolates, including the relationships between plasmid-mediated quinolone-resistance genes (), 6--aminoglycoside acetyltransferase-encoding genes [] and AmpC-encoding genes (pAmpC). Twelve isolates were positive (92.3 %), while one was positive (7.7 %). We detected , and pAmpC genes designated -like in 76.9 %, 100 % and 53.8 %, respectively, of the 13 isolates. Plasmids were transferred successfully for three of the 13 metallo-β-lactamase (MBL)-producing isolates, and the sizes of plasmids extracted from these donors and transconjugants were deduced to be 65 kb or 70 kb. OmpC or OmpF protein expression was reduced in all , and one lacked OmpK36. We demonstrate what appears to be the first evidence that, in Japan, producing MBLs carry various plasmid-mediated resistance genes, which may cause a further decrease in carbapenem susceptibility through reduction of the expression of outer-membrane proteins.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.050708-0
2013-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/3/446.html?itemId=/content/journal/jmm/10.1099/jmm.0.050708-0&mimeType=html&fmt=ahah

References

  1. Arakawa Y., Shibata N., Shibayama K., Kurokawa H., Yagi T., Fujiwara H., Goto M.. ( 2000;). Convenient test for screening metallo-β-lactamase-producing gram-negative bacteria by using thiol compounds. . J Clin Microbiol 38:, 40–43.[PubMed]
    [Google Scholar]
  2. Cagnacci S., Gualco L., Roveta S., Mannelli S., Borgianni L., Docquier J. D., Dodi F., Centanaro M., Debbia E.. & other authors ( 2008;). Bloodstream infections caused by multidrug-resistant Klebsiella pneumoniae producing the carbapenem-hydrolysing VIM-1 metallo-β-lactamase: first Italian outbreak. . J Antimicrob Chemother 61:, 296–300. [CrossRef][PubMed]
    [Google Scholar]
  3. Carlone G. M., Thomas M. L., Rumschlag H. S., Sottnek F. O.. ( 1986;). Rapid microprocedure for isolating detergent-insoluble outer membrane proteins from Haemophilus species. . J Clin Microbiol 24:, 330–332.[PubMed]
    [Google Scholar]
  4. CLSI ( 2011;). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-First Informational Supplement M100-S21. . Wayne, PA:: CLSI;.
  5. Doumith M., Ellington M. J., Livermore D. M., Woodford N.. ( 2009;). Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. . J Antimicrob Chemother 63:, 659–667. [CrossRef][PubMed]
    [Google Scholar]
  6. Hawkey P. M., Jones A. M.. ( 2009;). The changing epidemiology of resistance. . J Antimicrob Chemother 64: (Suppl. 1), i3–i10. [CrossRef][PubMed]
    [Google Scholar]
  7. Hirakata Y., Izumikawa K., Yamaguchi T., Takemura H., Tanaka H., Yoshida R., Matsuda J., Nakano M., Tomono K.. & other authors ( 1998;). Rapid detection and evaluation of clinical characteristics of emerging multiple-drug-resistant gram-negative rods carrying the metallo-β-lactamase gene blaIMP.. Antimicrob Agents Chemother 42:, 2006–2011.[PubMed]
    [Google Scholar]
  8. Kumarasamy K. K., Toleman M. A., Walsh T. R., Bagaria J., Butt F., Balakrishnan R., Chaudhary U., Doumith M., Giske C. G.. & other authors ( 2010;). Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. . Lancet Infect Dis 10:, 597–602. [CrossRef][PubMed]
    [Google Scholar]
  9. Kumita W., Saito R., Sato K., Ode T., Moriya K., Koike K., Chida T., Okamura N.. ( 2009;). Molecular characterizations of carbapenem and ciprofloxacin resistance in clinical isolates of Pseudomonas putida. . J Infect Chemother 15:, 6–12. [CrossRef][PubMed]
    [Google Scholar]
  10. Nishio H., Komatsu M., Shibata N., Shimakawa K., Sueyoshi N., Ura T., Satoh K., Toyokawa M., Nakamura T.. & other authors ( 2004;). Metallo-β-lactamase-producing gram-negative bacilli: laboratory-based surveillance in cooperation with 13 clinical laboratories in the Kinki region of Japan. . J Clin Microbiol 42:, 5256–5263. [CrossRef][PubMed]
    [Google Scholar]
  11. Ode T., Saito R., Kumita W., Sato K., Okugawa S., Moriya K., Koike K., Okamura N.. ( 2009;). Analysis of plasmid-mediated multidrug resistance in Escherichia coli and Klebsiella oxytoca isolates from clinical specimens in Japan. . Int J Antimicrob Agents 34:, 347–350. [CrossRef][PubMed]
    [Google Scholar]
  12. Pérez-Pérez F. J., Hanson N. D.. ( 2002;). Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. . J Clin Microbiol 40:, 2153–2162. [CrossRef][PubMed]
    [Google Scholar]
  13. Shannon K. P., French G. L.. ( 2004;). Increasing resistance to antimicrobial agents of Gram-negative organisms isolated at a London teaching hospital, 1995–2000. . J Antimicrob Chemother 53:, 818–825. [CrossRef][PubMed]
    [Google Scholar]
  14. Suh B., Bae I. K., Kim J., Jeong S. H., Yong D., Lee K.. ( 2010;). Outbreak of meropenem-resistant Serratia marcescens comediated by chromosomal AmpC β-lactamase overproduction and outer membrane protein loss. . Antimicrob Agents Chemother 54:, 5057–5061. [CrossRef][PubMed]
    [Google Scholar]
  15. Takahashi N., Yamaguchi F., Chen G., Yasuhara T., Ito R., Wakuta R., Fukuchi K.. ( 2010;). [Analysis of the antibiotic resistant gene in multidrug-resistant Enterobacter cloacae isolated at Showa University Hospital]. . Rinsho Byori 58:, 442–447 (in Japanese).[PubMed]
    [Google Scholar]
  16. Yagi T., Wachino J., Kurokawa H., Suzuki S., Yamane K., Doi Y., Shibata N., Kato H., Shibayama K., Arakawa Y.. ( 2005;). Practical methods using boronic acid compounds for identification of class C β-lactamase-producing Klebsiella pneumoniae and Escherichia coli. . J Clin Microbiol 43:, 2551–2558. [CrossRef][PubMed]
    [Google Scholar]
  17. Zhang R., Yang L., Cai J. C., Zhou H. W., Chen G.-X.. ( 2008;). High-level carbapenem resistance in a Citrobacter freundii clinical isolate is due to a combination of KPC-2 production and decreased porin expression. . J Med Microbiol 57:, 332–337. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.050708-0
Loading
/content/journal/jmm/10.1099/jmm.0.050708-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error