1887

Abstract

, an opportunistic human pathogen and ubiquitous environmental bacterium, is capable of forming specialized bacterial communities, referred to as biofilm. The results of this study demonstrate that the unique environment of the cystic fibrosis (CF) lung seems to select for a subgroup of autoaggregative and hyperpiliated small-colony variants (SCVs). These morphotypes showed increased fitness under stationary growth conditions in comparison with clonal wild-types and fast-growing revertants isolated from the SCV population . In accordance with the SCVs being hyperpiliated, they exhibited increased twitching motility and capacity for biofilm formation. In addition, the SCVs attached strongly to the pneumocytic cell line A549. The emergence of these highly adherent SCVs within the CF lung might play a key role in the pathogenesis of lung infection, where a biofilm mode of growth is thought to be responsible for persistent infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.05069-0
2003-04-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/4/295.html?itemId=/content/journal/jmm/10.1099/jmm.0.05069-0&mimeType=html&fmt=ahah

References

  1. Bieber, D., Ramer, S. W., Wu, C. Y., Murray, W. J., Tobe, T., Fernandez, R. & Schoolnik, G. K. ( 1998;). Type IV pili, transient bacterial aggregates, and virulence of enteropathogenic Escherichia coli. Science 280, 2114–2118.[CrossRef]
    [Google Scholar]
  2. Breitenstein, S., Walter, S., Bosshammer, J., Romling, U. & Tummler, B. ( 1997;). Direct sputum analysis of Pseudomonas aeruginosa macrorestriction fragment genotypes in patients with cystic fibrosis. Med Microbiol Immunol 186, 93–99.[CrossRef]
    [Google Scholar]
  3. Comolli, J. C., Hauser, A. R., Waite, L., Whitchurch, C. B., Mattick, J. S. & Engel, J. N. ( 1999;). Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect Immun 67, 3625–3630.
    [Google Scholar]
  4. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. ( 1995;). Microbial biofilms. Annu Rev Microbiol 49, 711–745.[CrossRef]
    [Google Scholar]
  5. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. ( 1999;). Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322.[CrossRef]
    [Google Scholar]
  6. Darzins, A. ( 1994;). Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus. Mol Microbiol 11, 137–153.[CrossRef]
    [Google Scholar]
  7. Deziel, E., Comeau, Y. & Villemur, R. ( 2001;). Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183, 1195–1204.[CrossRef]
    [Google Scholar]
  8. Doig, P., Todd, T., Sastry, P. A., Lee, K. K., Hodges, R. S., Paranchych, W. & Irvin, R. T. ( 1988;). Role of pili in adhesion of Pseudomonas aeruginosa to human respiratory epithelial cells. Infect Immun 56, 1641–1646.
    [Google Scholar]
  9. Drenkard, E. & Ausubel, F. M. (2002). Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416, 740–743.
  10. Engler-Blum, G., Meier, M., Frank, J. & Muller, G. A. ( 1993;). Reduction of background problems in nonradioactive northern and Southern blot analyses enables higher sensitivity than 32P-based hybridizations. Anal Biochem 210, 235–244.[CrossRef]
    [Google Scholar]
  11. Foght, J. M., Westlake, D. W., Johnson, W. M. & Ridgway, H. F. ( 1996;). Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology 142, 2333–2340.[CrossRef]
    [Google Scholar]
  12. Garrett, E. S., Perlegas, D. & Wozniak, D. J. ( 1999;). Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J Bacteriol 181, 7401–7404.
    [Google Scholar]
  13. Gilligan, P. H. ( 1991;). Microbiology of airway disease in patients with cystic fibrosis. Clin Microbiol Rev 4, 35–51.
    [Google Scholar]
  14. Govan, J. R. & Deretic, V. ( 1996;). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 60, 539–574.
    [Google Scholar]
  15. Haussler, S., Tummler, B., Weissbrodt, H., Rohde, M. & Steinmetz, I. ( 1999;). Small-colony variants of Pseudomonas aeruginosa in cystic fibrosis. Clin Infect Dis 29, 621–625.[CrossRef]
    [Google Scholar]
  16. Hentzer, M., Teitzel, G. M., Balzer, G. J., Heydorn, A., Molin, S., Givskov, M. & Parsek, M. R. ( 2001;). Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J Bacteriol 183, 5395–5401.[CrossRef]
    [Google Scholar]
  17. Lam, J., Chan, R., Lam, K. & Costerton, J. W. ( 1980;). Production of mucoid microcolonies by Pseudomonas aeruginosa within infected lungs in cystic fibrosis. Infect Immun 28, 546–556.
    [Google Scholar]
  18. Lenski, R. E. ( 1991;). Quantifying fitness and gene stability in microorganisms. Biotechnology 15, 173–192.
    [Google Scholar]
  19. Lyczak, J. B., Cannon, C. L. & Pier, G. B. ( 2002;). Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15, 194–222.[CrossRef]
    [Google Scholar]
  20. Oelmuller, U., Schlegel, H. G. & Friedrich, C. G. ( 1990;). Differential stability of mRNA species of Alcaligenes eutrophus soluble and particulate hydrogenases. J Bacteriol 172, 7057–7064.
    [Google Scholar]
  21. Oliver, A., Canton, R., Campo, P., Baquero, F. & Blazquez, J. ( 2000;). High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1254.[CrossRef]
    [Google Scholar]
  22. O'Toole, G. A. & Kolter, R. ( 1998;). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30, 295–304.[CrossRef]
    [Google Scholar]
  23. O'Toole, G., Kaplan, H. B. & Kolter, R. ( 2000;). Biofilm formation as microbial development. Annu Rev Microbiol 54, 49–79.[CrossRef]
    [Google Scholar]
  24. Perez, P. F., Minnaard, Y., Disalvo, E. A. & De Antoni, G. L. ( 1998;). Surface properties of bifidobacterial strains of human origin. Appl Environ Microbiol 64, 21–26.
    [Google Scholar]
  25. Rainey, P. B. & Travisano, M. ( 1998;). Adaptive radiation in a heterogeneous environment. Nature 394, 69–72.[CrossRef]
    [Google Scholar]
  26. Romling, U., Wingender, J., Muller, H. & Tummler, B. ( 1994;a). A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 60, 1734–1738.
    [Google Scholar]
  27. Romling, U., Fiedler, B., Bosshammer, J., Grothues, D., Greipel, J., von der Hardt, H. & Tummler, B. ( 1994;b). Epidemiology of chronic Pseudomonas aeruginosa infections in cystic fibrosis. J Infect Dis 170, 1616–1621.[CrossRef]
    [Google Scholar]
  28. Spangenberg, C., Fislage, R., Sierralta, W., Tummler, B. & Romling, U. ( 1995;). Comparison of type IV-pilin genes of Pseudomonas aeruginosa of various habitats has uncovered a novel unusual sequence. FEMS Microbiol Lett 125, 265–273.[CrossRef]
    [Google Scholar]
  29. Stepanovic, S., Vukovic, D., Dakic, I., Savic, B. & Svabic-Vlahovic, M. ( 2000;). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40, 175–179.[CrossRef]
    [Google Scholar]
  30. Vallet, I., Olson, J. W., Lory, S., Lazdunski, A. & Filloux, A. ( 2001;). The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters ( cup) and their involvement in biofilm formation. Proc Natl Acad Sci U S A 98, 6911–6916.[CrossRef]
    [Google Scholar]
  31. Wall, D. & Kaiser, D. ( 1999;). Type IV pili and cell motility. Mol Microbiol 32, 1–10.[CrossRef]
    [Google Scholar]
  32. Watnick, P. & Kolter, R. ( 2000;). Biofilm, city of microbes. J Bacteriol 182, 2675–2679.[CrossRef]
    [Google Scholar]
  33. Worlitzsch, D., Tarran, R., Ulrich, M. & 12 other authors ( 2002;). Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109, 317–325.[CrossRef]
    [Google Scholar]
  34. Zierdt, C. H. & Schmidt, P. J. ( 1964;). Dissociation in Pseudomonas aeruginosa. J Bacteriol 87, 1003–1010.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.05069-0
Loading
/content/journal/jmm/10.1099/jmm.0.05069-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error