1887

Abstract

The impact was assessed of censored serological measurements on regression equations fitted to data from panels of sera tested by different laboratories, for the purpose of standardizing serosurvey results to common units. Several methods that adjust for censoring were compared, such as deletion, simple substitution, multiple imputation and censored regression. Simulations were generated from different scenarios for varying proportions of data censored. The scenarios were based on serological panel comparisons tested by different national laboratories and assays as part of the European Sero-Epidemiology Network 2 project. The results showed that the simple substitution and deletion methods worked reasonably well for low proportions of data censored (<20 %). However, in general, the censored regression method gave estimates closer to the truth than the other methods examined under different scenarios, such as types of equations used and violation of regression assumptions. Interval-censored regression produced the least biased estimates for assay data resulting from dilution series. Censored regression produced the least biased estimates in comparison with the other methods examined. Moreover, the results suggest using interval-censored regression methods for assay data resulting from dilution series.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.050062-0
2013-01-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/1/93.html?itemId=/content/journal/jmm/10.1099/jmm.0.050062-0&mimeType=html&fmt=ahah

References

  1. Anastassopoulou C. G. , Kafatos G. , Nardone A. , Andrews N. , Pebody R. G. , Mossong J. , Davidkin I. , Gelb D. , DE Ory F. . & other authors ( 2009; ). The European Sero-Epidemiology Network 2 (ESEN2): standardization of assay results for hepatitis A virus (HAV) to enable comparisons of seroprevalence data across 15 countries. . Epidemiol Infect 137:, 485–494. [CrossRef] [PubMed]
    [Google Scholar]
  2. Andrews N. , Pebody R. G. , Berbers G. , Blondeau C. , Crovari P. , Davidkin I. , Farrington P. , Fievet-Groyne F. , Gabutti G. . & other authors ( 2000; ). The European Sero-Epidemiology Network: standardizing the enzyme immunoassay results for measles, mumps and rubella. . Epidemiol Infect 125:, 127–141. [CrossRef] [PubMed]
    [Google Scholar]
  3. Breen R. . ( 1996; ). Regression Models: Censored, Sample Selected, or Truncated Data. Thousand Oaks, CA:: Sage Publications;.
    [Google Scholar]
  4. Carpenter J. , Goldstein H. . ( 2004; ). Multiple imputation in MLwiN. Mult Mod Newsletter 16, 9–18.
  5. Gould W. , Sribney W. . ( 1999; ). Maximum Likelihood Estimation with Stata. College Station, TX:: Stata Press;.
    [Google Scholar]
  6. Helsel D. R. . ( 2012; ). Statistics for Censored Environmental Data using Minitab and R, , 2nd edn.. New York:: John Wiley & Sons;. [CrossRef]
    [Google Scholar]
  7. Jain R. B. , Caudill S. P. , Wang R. Y. , Monsell E. . ( 2008; ). Evaluation of maximum likelihood procedures to estimate left censored observations. . Anal Chem 80:, 1124–1132. [CrossRef] [PubMed]
    [Google Scholar]
  8. Kafatos G. , Andrews N. , Nardone A. . ESEN2 Project ( 2005; ). Model selection methodology for inter-laboratory standardisation of antibody titres. . Vaccine 23:, 5022–5027. [CrossRef] [PubMed]
    [Google Scholar]
  9. Krishnamoorthy K. , Mallick A. , Mathew T. . ( 2009; ). Model-based imputation approach for data analysis in the presence of non-detects. . Ann Occup Hyg 53:, 249–263. [CrossRef] [PubMed]
    [Google Scholar]
  10. Lim J. . ( 2006; ). Permutation procedures with censored data. . Comput Stat Data Anal 50:, 332–345. [CrossRef]
    [Google Scholar]
  11. Lubin J. H. , Colt J. S. , Camann D. , Davis S. , Cerhan J. R. , Severson R. K. , Bernstein L. , Hartge P. . ( 2004; ). Epidemiologic evaluation of measurement data in the presence of detection limits. . Environ Health Perspect 112:, 1691–1696. [CrossRef] [PubMed]
    [Google Scholar]
  12. Lyles R. H. , Williams J. K. , Chuachoowong R. . ( 2001; ). Correlating two viral load assays with known detection limits. . Biometrics 57:, 1238–1244. [CrossRef] [PubMed]
    [Google Scholar]
  13. Lynn H. S. . ( 2001; ). Maximum likelihood inference for left-censored HIV RNA data. . Stat Med 20:, 33–45. [CrossRef] [PubMed]
    [Google Scholar]
  14. Nardone A. , Miller E. . ESEN2 Group ( 2004; ). Serological surveillance of rubella in Europe: European Sero-Epidemiology Network (ESEN2). . Euro Surveill 9:, 5–7.[PubMed]
    [Google Scholar]
  15. Osborne K. , Weinberg J. , Miller E. . ( 1997; ). The European Sero-Epidemiology Network. . Euro Surveill 2:, 29–31.[PubMed]
    [Google Scholar]
  16. Rigby R. A. , Stasinopoulos D. M. . ( 2005; ). Generalized additive models for location, scale and shape. . J Roy St C Appl Stat 54:, 507–554.[CrossRef]
    [Google Scholar]
  17. Schafer J. L. . ( 2010; ). The multiple imputation FAQ page. http://sites.stat.psu.edu/~jls/mifaq.html
  18. Thompson M. L. , Nelson K. P. . ( 2003; ). Linear regression with Type I interval- and left-censored response data. . Environ Ecol Stat 10:, 221–230. [CrossRef]
    [Google Scholar]
  19. Tischer A. , Andrews N. , Kafatos G. , Nardone A. , Berbers G. , Davidkin I. , Aboudy Y. , Backhouse J. , Barbara C. . & other authors ( 2007; ). Standardization of measles, mumps and rubella assays to enable comparisons of seroprevalence data across 21 European countries and Australia. . Epidemiol Infect 135:, 787–797. [CrossRef] [PubMed]
    [Google Scholar]
  20. Whitcomb B. W. , Schisterman E. F. . ( 2008; ). Assays with lower detection limits: implications for epidemiological investigations. . Paediatr Perinat Epidemiol 22:, 597–602. [CrossRef] [PubMed]
    [Google Scholar]
  21. WHO . ( 2005; ). Eliminating measles and rubella and preventing congenital rubella infection. World Health Organization..
    [Google Scholar]
  22. WHO . ( 2006; ). Diphtheria vaccine. . Wkly Epidemiol Rec 3:, 24–32.
    [Google Scholar]
  23. Zhang Z. , Sun J. . ( 2010; ). Interval censoring. . Stat Methods Med Res 19:, 53–70. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.050062-0
Loading
/content/journal/jmm/10.1099/jmm.0.050062-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error