1887

Abstract

In this study, the immune-modulatory and vaccine effects of using an interleukin (IL)-18 expression plasmid as a genetic adjuvant to enhance DNA vaccine-induced immune responses were investigated in a mouse herpes simplex virus 1 (HSV-1) challenge model. BALB/c mice were immunized by three intramuscular inoculations of HSV-1 glycoprotein D (gD) DNA vaccine alone or in combination with a plasmid expressing mature IL-18 peptide. Both the serum IgG2a/IgG1 ratio and T helper 1-type (Th1) cytokines [IL-2 and interferon (IFN)-γ] were increased significantly by the co-injection of the IL-18 plasmid compared with the injection of gD DNA alone. However, the production of IL-10 was inhibited by IL-18 plasmid co-injection. Furthermore, IL-18 plasmid co-injection efficiently enhanced antigen-specific lymphocyte proliferation and the delayed-type hypersensitivity response. When mice were challenged with HSV-1 at the cornea, co-injection of IL-18 plasmid with gD DNA vaccine showed significantly better protection, manifested as lower corneal lesion scores and faster recovery. These experiments indicate that co-injection of an IL-18 plasmid with gD DNA vaccine efficiently induces Th1-dominant immune responses and improves the protective effect against HSV-1 infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.04998-0
2003-03-01
2020-07-11
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/3/223.html?itemId=/content/journal/jmm/10.1099/jmm.0.04998-0&mimeType=html&fmt=ahah

References

  1. Billaut-Mulot O, Idziorek T, Loyens M, Capron A, Bahr G. M. 2001; Modulation of cellular and humoral immune responses to a multiepitopic HIV-1 DNA vaccine by interleukin-18 DNA immunization/viral protein boost. Vaccine 19:2803–2811 [CrossRef]
    [Google Scholar]
  2. Bourne N, Stanberry L. R, Bernstein D. I, Lew D. 1996; DNA immunization against experimental genital herpes simplex virus infection. J Infect Dis 173:800–807 [CrossRef]
    [Google Scholar]
  3. Bukowski R. M. 2000; Cytokine combinations: therapeutic use in patients with advanced renal cell carcinoma. Semin Oncol 27:204–212
    [Google Scholar]
  4. Cantin E. M, Hinton D. R, Chen J, Openshaw H. 1995; Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1. J Virol 69:4898–4905
    [Google Scholar]
  5. Cohen A. D, Boyer J. D, Weiner D. B. 1998; Modulating the immune response to genetic immunization. FASEB J 12:1611–1626
    [Google Scholar]
  6. Corey L, Langenberg A. G, Ashley R. 14 other authors 1999; Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA 282:331–340
    [Google Scholar]
  7. Cruz P. E, Khalil P. L, Dryden T. D, Chiou H. C, Fink P. S, Berberich S. J, Bigley N. J. 1999; A novel immunization method to induce cytotoxic T-lymphocyte responses (CTL) against plasmid-encoded herpes simplex virus type-1 glycoprotein D. Vaccine 17:1091–1099 [CrossRef]
    [Google Scholar]
  8. Fujioka N, Akazawa R, Ohashi K, Fujii M, Ikeda M, Kurimoto M. 1999; Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J Virol 73:2401–2409
    [Google Scholar]
  9. Garcia V. E, Uyemura K, Sieling P. A, Ochoa M. T, Morita C. T, Okamura H, Kurimoto M, Rea T. H, Modlin R. L. 1999; IL-18 promotes type 1 cytokine production from NK cells and T cells in human intracellular infection. J Immunol 162:6114–6121
    [Google Scholar]
  10. Geiger K. D, Lee M. S, Baugh C, Sarvetnick N. E. 1995; Protective effects of interferon-γ in intraocular herpes simplex type 1 infection do not depend on major histocompatibility complex class I or class II expression. J Neurovirol 1:405–409 [CrossRef]
    [Google Scholar]
  11. Ghiasi H, Cai S, Slanina S, Nesburn A. B, Wechsler S. L. 1995; Vaccination of mice with herpes simplex virus type 1 glycoprotein D DNA produces low levels of protection against lethal HSV-1 challenge. Antiviral Res 28:147–157 [CrossRef]
    [Google Scholar]
  12. Hara I, Nagai H, Miyake H. 8 other authors 2000; Effectiveness of cancer vaccine therapy using cells transduced with the interleukin-12 gene combined with systemic interleukin-18 administration. Cancer Gene Ther 7:83–90 [CrossRef]
    [Google Scholar]
  13. Inoue T, Inoue Y, Nakamura T. 8 other authors 2000; Preventive effect of local plasmid DNA vaccine encoding gD or gD-IL-2 on herpetic keratitis. Invest Ophthalmol Vis Sci 41:4209–4215
    [Google Scholar]
  14. Iwasaki A, Stiernholm B. J, Chan A. K, Berinstein N. L, Barber B. H. 1997; Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 158:4591–4601
    [Google Scholar]
  15. Keadle T. L, Laycock K. A, Miller J. K, Hook K. K, Fenoglio E. D, Francotte M, Slaoui M, Stuart P. M, Pepose J. S. 1997; Efficacy of a recombinant glycoprotein D subunit vaccine on the development of primary and recurrent ocular infection with herpes simplex virus type 1 in mice. J Infect Dis 176:331–338 [CrossRef]
    [Google Scholar]
  16. Kim J. J, Bagarazzi M. L, Trivedi N. 12 other authors 1997; Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes. Nat Biotechnol 15:641–646 [CrossRef]
    [Google Scholar]
  17. Kim J. J, Trivedi N. N, Nottingham L. K. 13 other authors 1998; Modulation of amplitude and direction of in vivo immune responses by co-administration of cytokine gene expression cassettes with DNA immunogens. Eur J Immunol 28:1089–1103 [CrossRef]
    [Google Scholar]
  18. Kim J. J, Simbiri K. A, Sin J. I. & 10 other authors (1999a). Cytokine molecular adjuvants modulate immune responses induced by DNA vaccine constructs for HIV-1 and SIV. J Interferon Cytokine Res 19:77–84 [CrossRef]
    [Google Scholar]
  19. Kim J. J, Nottingham L. K, Tsai A. & 9 other authors (1999b). Antigen-specific humoral and cellular immune responses can be modulated in rhesus macaques through the use of IFN-γ, IL-12, or IL-18 gene adjuvants. J Med Primatol 28:214–223 [CrossRef]
    [Google Scholar]
  20. Kim J. J, Yang J. S, Dentchev T, Dang K, Weiner D. B. 2000; Chemokine gene adjuvants can modulate immune responses induced by DNA vaccines. J Interferon Cytokine Res 20:487–498 [CrossRef]
    [Google Scholar]
  21. Kohno K, Kataoka J, Ohtsuki T, Suemoto Y, Okamoto I, Usui M, Ikeda M, Kurimoto M. 1997; IFN-γ-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12. J Immunol 158:1541–1550
    [Google Scholar]
  22. Kremer L, Dupre L, Wolowczuk I, Locht C. 1999; In vivo immunomodulation following intradermal injection with DNA encoding IL-18. J Immunol 163:3226–3231
    [Google Scholar]
  23. Landolfo S, Gribaudo G, Angeretti A, Gariglio M. 1995; Mechanisms of viral inhibition by interferons. Pharmacol Ther 65:415–442 [CrossRef]
    [Google Scholar]
  24. McKendall R. R. 1983; Delayed IgG-mediated clearance of herpes simplex virus type 1 from the CNS but not footpad during the early stages of infection: possible result of relative integrity of the blood–brain barrier. J Gen Virol 64:1965–1972 [CrossRef]
    [Google Scholar]
  25. Nash A. A, Cambouropoulos P. 1993; The immune response to herpes simplex virus. Semin Virol 4:181–186 [CrossRef]
    [Google Scholar]
  26. Nash A. D, Lofthouse S. A, Barcham G. J, Jacobs H. J, Ashman K, Meeusen E. N, Brandon M. R, Andrews A. E. 1993; Recombinant cytokines as immunological adjuvants. Immunol Cell Biol 71:367–379 [CrossRef]
    [Google Scholar]
  27. Neumann-Haefelin D, Sundmacher R, Frey H, Merk W. 1985; Recombinant HuIFN-γ prevents herpes simplex keratitis in African green monkeys: demonstration of synergism with recombinant HuIFN-α 2. Med Microbiol Immunol (Berl) 174:81–86 [CrossRef]
    [Google Scholar]
  28. Notkins A. L. 1974; Immune mechanisms by which the spread of viral infections is stopped. Cell Immunol 11:478–483 [CrossRef]
    [Google Scholar]
  29. Ohkusu K, Yoshimoto T, Takeda K, Ogura T, Kashiwamura S, Iwakura Y, Akira S, Okamura H, Nakanishi K. 2000; Potentiality of interleukin-18 as a useful reagent for treatment and prevention of Leishmania major infection. Infect Immun 68:2449–2456 [CrossRef]
    [Google Scholar]
  30. Okamura H, Nagata K, Komatsu T. 8 other authors 1995; A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infect Immun 63:3966–3972
    [Google Scholar]
  31. Opal S. M, Wherry J. C, Grint P. 1998; Interleukin-10: potential benefits and possible risks in clinical infectious diseases. Clin Infect Dis 27:1497–1507 [CrossRef]
    [Google Scholar]
  32. Price R. W, Walz M. A, Wohlenberg C, Notkins A. L. 1975; Latent infection of sensory ganglia with herpes simplex virus: efficacy of immunization. Science 188:938–940 [CrossRef]
    [Google Scholar]
  33. Rager-Zisman B, Allison A. C. 1976; Mechanism of immunologic resistance to herpes simplex virus 1 (HSV-1) infection. J Immunol 116:35–40
    [Google Scholar]
  34. Reiter Z. 1993; Interferon – a major regulator of natural killer cell-mediated cytotoxicity. J Interferon Res 13:247–257 [CrossRef]
    [Google Scholar]
  35. Scott P, Trinchieri G. 1997; IL-12 as an adjuvant for cell-mediated immunity. Semin Immunol 9:285–291 [CrossRef]
    [Google Scholar]
  36. Sethi K. K, Omata Y, Schneweis K. E. 1983; Protection of mice from fatal herpes simplex virus type 1 infection by adoptive transfer of cloned virus-specific and H-2-restricted cytotoxic T lymphocytes. J Gen Virol 64:443–447 [CrossRef]
    [Google Scholar]
  37. Sin J. I, Kim J. J, Ugen K. E, Ciccarelli R. B, Higgins T. J, Weiner D. B. 1998; Enhancement of protective humoral (Th2) and cell-mediated (Th1) immune responses against herpes simplex virus-2 through co-delivery of granulocyte-macrophage colony-stimulating factor expression cassettes. Eur J Immunol 28:3530–3540 [CrossRef]
    [Google Scholar]
  38. Sin J. I, Kim J. J, Arnold R. L. 9 other authors 1999; IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Th1-type CD4+ T cell-mediated protective immunity against herpes simplex virus-2 challenge. J Immunol 162:2912–2921
    [Google Scholar]
  39. Tanigawa M, Bigger J. E, Kanter M. Y, Atherton S. S. 2000; Natural killer cells prevent direct anterior-to-posterior spread of herpes simplex virus type 1 in the eye. Invest Ophthalmol Vis Sci 41:132–137
    [Google Scholar]
  40. Tovey M. G, Meritet J. F, Guymarho J, Maury C. 1999; Mucosal cytokine therapy: marked antiviral and antitumor activity. J Interferon Cytokine Res 19:911–921 [CrossRef]
    [Google Scholar]
  41. Ushio S, Namba M, Okura T. 13 other authors 1996; Cloning of the cDNA for human IFN-γ-inducing factor, expression in Escherichia coli , and studies on the biologic activities of the protein. J Immunol 156:4274–4279
    [Google Scholar]
  42. Zhu M. Z, Liu H. W, Liu X. J, Han Y. H, Yang B. L, Song G. X. 2002; Construction of herpes simplex virus type 1 glycoprotein D DNA vaccine and its preliminary study. Acta Acad Med Sin 24:67–70
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.04998-0
Loading
/content/journal/jmm/10.1099/jmm.0.04998-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error