1887

Abstract

In this study, the immune-modulatory and vaccine effects of using an interleukin (IL)-18 expression plasmid as a genetic adjuvant to enhance DNA vaccine-induced immune responses were investigated in a mouse herpes simplex virus 1 (HSV-1) challenge model. BALB/c mice were immunized by three intramuscular inoculations of HSV-1 glycoprotein D (gD) DNA vaccine alone or in combination with a plasmid expressing mature IL-18 peptide. Both the serum IgG2a/IgG1 ratio and T helper 1-type (Th1) cytokines [IL-2 and interferon (IFN)-γ] were increased significantly by the co-injection of the IL-18 plasmid compared with the injection of gD DNA alone. However, the production of IL-10 was inhibited by IL-18 plasmid co-injection. Furthermore, IL-18 plasmid co-injection efficiently enhanced antigen-specific lymphocyte proliferation and the delayed-type hypersensitivity response. When mice were challenged with HSV-1 at the cornea, co-injection of IL-18 plasmid with gD DNA vaccine showed significantly better protection, manifested as lower corneal lesion scores and faster recovery. These experiments indicate that co-injection of an IL-18 plasmid with gD DNA vaccine efficiently induces Th1-dominant immune responses and improves the protective effect against HSV-1 infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.04998-0
2003-03-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/3/223.html?itemId=/content/journal/jmm/10.1099/jmm.0.04998-0&mimeType=html&fmt=ahah

References

  1. Billaut-Mulot, O., Idziorek, T., Loyens, M., Capron, A. & Bahr, G. M. ( 2001;). Modulation of cellular and humoral immune responses to a multiepitopic HIV-1 DNA vaccine by interleukin-18 DNA immunization/viral protein boost. Vaccine 19, 2803–2811.[CrossRef]
    [Google Scholar]
  2. Bourne, N., Stanberry, L. R., Bernstein, D. I. & Lew, D. ( 1996;). DNA immunization against experimental genital herpes simplex virus infection. J Infect Dis 173, 800–807.[CrossRef]
    [Google Scholar]
  3. Bukowski, R. M. ( 2000;). Cytokine combinations: therapeutic use in patients with advanced renal cell carcinoma. Semin Oncol 27, 204–212.
    [Google Scholar]
  4. Cantin, E. M., Hinton, D. R., Chen, J. & Openshaw, H. ( 1995;). Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1. J Virol 69, 4898–4905.
    [Google Scholar]
  5. Cohen, A. D., Boyer, J. D. & Weiner, D. B. ( 1998;). Modulating the immune response to genetic immunization. FASEB J 12, 1611–1626.
    [Google Scholar]
  6. Corey, L., Langenberg, A. G., Ashley, R. & 14 other authors ( 1999;). Recombinant glycoprotein vaccine for the prevention of genital HSV-2 infection: two randomized controlled trials. Chiron HSV Vaccine Study Group. JAMA 282, 331–340.
    [Google Scholar]
  7. Cruz, P. E., Khalil, P. L., Dryden, T. D., Chiou, H. C., Fink, P. S., Berberich, S. J. & Bigley, N. J. ( 1999;). A novel immunization method to induce cytotoxic T-lymphocyte responses (CTL) against plasmid-encoded herpes simplex virus type-1 glycoprotein D. Vaccine 17, 1091–1099.[CrossRef]
    [Google Scholar]
  8. Fujioka, N., Akazawa, R., Ohashi, K., Fujii, M., Ikeda, M. & Kurimoto, M. ( 1999;). Interleukin-18 protects mice against acute herpes simplex virus type 1 infection. J Virol 73, 2401–2409.
    [Google Scholar]
  9. Garcia, V. E., Uyemura, K., Sieling, P. A., Ochoa, M. T., Morita, C. T., Okamura, H., Kurimoto, M., Rea, T. H. & Modlin, R. L. ( 1999;). IL-18 promotes type 1 cytokine production from NK cells and T cells in human intracellular infection. J Immunol 162, 6114–6121.
    [Google Scholar]
  10. Geiger, K. D., Lee, M. S., Baugh, C. & Sarvetnick, N. E. ( 1995;). Protective effects of interferon-γ in intraocular herpes simplex type 1 infection do not depend on major histocompatibility complex class I or class II expression. J Neurovirol 1, 405–409.[CrossRef]
    [Google Scholar]
  11. Ghiasi, H., Cai, S., Slanina, S., Nesburn, A. B. & Wechsler, S. L. ( 1995;). Vaccination of mice with herpes simplex virus type 1 glycoprotein D DNA produces low levels of protection against lethal HSV-1 challenge. Antiviral Res 28, 147–157.[CrossRef]
    [Google Scholar]
  12. Hara, I., Nagai, H., Miyake, H. & 8 other authors ( 2000;). Effectiveness of cancer vaccine therapy using cells transduced with the interleukin-12 gene combined with systemic interleukin-18 administration. Cancer Gene Ther 7, 83–90.[CrossRef]
    [Google Scholar]
  13. Inoue, T., Inoue, Y., Nakamura, T. & 8 other authors ( 2000;). Preventive effect of local plasmid DNA vaccine encoding gD or gD-IL-2 on herpetic keratitis. Invest Ophthalmol Vis Sci 41, 4209–4215.
    [Google Scholar]
  14. Iwasaki, A., Stiernholm, B. J., Chan, A. K., Berinstein, N. L. & Barber, B. H. (1997). Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. J Immunol 158, 4591–4601.
  15. Keadle, T. L., Laycock, K. A., Miller, J. K., Hook, K. K., Fenoglio, E. D., Francotte, M., Slaoui, M., Stuart, P. M. & Pepose, J. S. ( 1997;). Efficacy of a recombinant glycoprotein D subunit vaccine on the development of primary and recurrent ocular infection with herpes simplex virus type 1 in mice. J Infect Dis 176, 331–338.[CrossRef]
    [Google Scholar]
  16. Kim, J. J., Bagarazzi, M. L., Trivedi, N. & 12 other authors ( 1997;). Engineering of in vivo immune responses to DNA immunization via codelivery of costimulatory molecule genes. Nat Biotechnol 15, 641–646.[CrossRef]
    [Google Scholar]
  17. Kim, J. J., Trivedi, N. N., Nottingham, L. K. & 13 other authors ( 1998;). Modulation of amplitude and direction of in vivo immune responses by co-administration of cytokine gene expression cassettes with DNA immunogens. Eur J Immunol 28, 1089–1103.[CrossRef]
    [Google Scholar]
  18. Kim, J. J., Simbiri, K. A., Sin, J. I. & 10 other authors ( 1999;a). Cytokine molecular adjuvants modulate immune responses induced by DNA vaccine constructs for HIV-1 and SIV. J Interferon Cytokine Res 19, 77–84.[CrossRef]
    [Google Scholar]
  19. Kim, J. J., Nottingham, L. K., Tsai, A. & 9 other authors ( 1999;b). Antigen-specific humoral and cellular immune responses can be modulated in rhesus macaques through the use of IFN-γ, IL-12, or IL-18 gene adjuvants. J Med Primatol 28, 214–223.[CrossRef]
    [Google Scholar]
  20. Kim, J. J., Yang, J. S., Dentchev, T., Dang, K. & Weiner, D. B. ( 2000;). Chemokine gene adjuvants can modulate immune responses induced by DNA vaccines. J Interferon Cytokine Res 20, 487–498.[CrossRef]
    [Google Scholar]
  21. Kohno, K., Kataoka, J., Ohtsuki, T., Suemoto, Y., Okamoto, I., Usui, M., Ikeda, M. & Kurimoto, M. ( 1997;). IFN-γ-inducing factor (IGIF) is a costimulatory factor on the activation of Th1 but not Th2 cells and exerts its effect independently of IL-12. J Immunol 158, 1541–1550.
    [Google Scholar]
  22. Kremer, L., Dupre, L., Wolowczuk, I. & Locht, C. ( 1999;). In vivo immunomodulation following intradermal injection with DNA encoding IL-18. J Immunol 163, 3226–3231.
    [Google Scholar]
  23. Landolfo, S., Gribaudo, G., Angeretti, A. & Gariglio, M. ( 1995;). Mechanisms of viral inhibition by interferons. Pharmacol Ther 65, 415–442.[CrossRef]
    [Google Scholar]
  24. McKendall, R. R. ( 1983;). Delayed IgG-mediated clearance of herpes simplex virus type 1 from the CNS but not footpad during the early stages of infection: possible result of relative integrity of the blood–brain barrier. J Gen Virol 64, 1965–1972.[CrossRef]
    [Google Scholar]
  25. Nash, A. A. & Cambouropoulos, P. ( 1993;). The immune response to herpes simplex virus. Semin Virol 4, 181–186.[CrossRef]
    [Google Scholar]
  26. Nash, A. D., Lofthouse, S. A., Barcham, G. J., Jacobs, H. J., Ashman, K., Meeusen, E. N., Brandon, M. R. & Andrews, A. E. ( 1993;). Recombinant cytokines as immunological adjuvants. Immunol Cell Biol 71, 367–379.[CrossRef]
    [Google Scholar]
  27. Neumann-Haefelin, D., Sundmacher, R., Frey, H. & Merk, W. ( 1985;). Recombinant HuIFN-γ prevents herpes simplex keratitis in African green monkeys: demonstration of synergism with recombinant HuIFN-α 2. Med Microbiol Immunol (Berl) 174, 81–86.[CrossRef]
    [Google Scholar]
  28. Notkins, A. L. ( 1974;). Immune mechanisms by which the spread of viral infections is stopped. Cell Immunol 11, 478–483.[CrossRef]
    [Google Scholar]
  29. Ohkusu, K., Yoshimoto, T., Takeda, K., Ogura, T., Kashiwamura, S., Iwakura, Y., Akira, S., Okamura, H. & Nakanishi, K. ( 2000;). Potentiality of interleukin-18 as a useful reagent for treatment and prevention of Leishmania major infection. Infect Immun 68, 2449–2456.[CrossRef]
    [Google Scholar]
  30. Okamura, H., Nagata, K., Komatsu, T. & 8 other authors ( 1995;). A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infect Immun 63, 3966–3972.
    [Google Scholar]
  31. Opal, S. M., Wherry, J. C. & Grint, P. ( 1998;). Interleukin-10: potential benefits and possible risks in clinical infectious diseases. Clin Infect Dis 27, 1497–1507.[CrossRef]
    [Google Scholar]
  32. Price, R. W., Walz, M. A., Wohlenberg, C. & Notkins, A. L. ( 1975;). Latent infection of sensory ganglia with herpes simplex virus: efficacy of immunization. Science 188, 938–940.[CrossRef]
    [Google Scholar]
  33. Rager-Zisman, B. & Allison, A. C. ( 1976;). Mechanism of immunologic resistance to herpes simplex virus 1 (HSV-1) infection. J Immunol 116, 35–40.
    [Google Scholar]
  34. Reiter, Z. ( 1993;). Interferon – a major regulator of natural killer cell-mediated cytotoxicity. J Interferon Res 13, 247–257.[CrossRef]
    [Google Scholar]
  35. Scott, P. & Trinchieri, G. ( 1997;). IL-12 as an adjuvant for cell-mediated immunity. Semin Immunol 9, 285–291.[CrossRef]
    [Google Scholar]
  36. Sethi, K. K., Omata, Y. & Schneweis, K. E. ( 1983;). Protection of mice from fatal herpes simplex virus type 1 infection by adoptive transfer of cloned virus-specific and H-2-restricted cytotoxic T lymphocytes. J Gen Virol 64, 443–447.[CrossRef]
    [Google Scholar]
  37. Sin, J. I., Kim, J. J., Ugen, K. E., Ciccarelli, R. B., Higgins, T. J. & Weiner, D. B. ( 1998;). Enhancement of protective humoral (Th2) and cell-mediated (Th1) immune responses against herpes simplex virus-2 through co-delivery of granulocyte-macrophage colony-stimulating factor expression cassettes. Eur J Immunol 28, 3530–3540.[CrossRef]
    [Google Scholar]
  38. Sin, J. I., Kim, J. J., Arnold, R. L. & 9 other authors ( 1999;). IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Th1-type CD4+ T cell-mediated protective immunity against herpes simplex virus-2 challenge. J Immunol 162, 2912–2921.
    [Google Scholar]
  39. Tanigawa, M., Bigger, J. E., Kanter, M. Y. & Atherton, S. S. ( 2000;). Natural killer cells prevent direct anterior-to-posterior spread of herpes simplex virus type 1 in the eye. Invest Ophthalmol Vis Sci 41, 132–137.
    [Google Scholar]
  40. Tovey, M. G., Meritet, J. F., Guymarho, J. & Maury, C. ( 1999;). Mucosal cytokine therapy: marked antiviral and antitumor activity. J Interferon Cytokine Res 19, 911–921.[CrossRef]
    [Google Scholar]
  41. Ushio, S., Namba, M., Okura, T. & 13 other authors ( 1996;). Cloning of the cDNA for human IFN-γ-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol 156, 4274–4279.
    [Google Scholar]
  42. Zhu, M. Z., Liu, H. W., Liu, X. J., Han, Y. H., Yang, B. L. & Song, G. X. ( 2002;). Construction of herpes simplex virus type 1 glycoprotein D DNA vaccine and its preliminary study. Acta Acad Med Sin 24, 67–70.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.04998-0
Loading
/content/journal/jmm/10.1099/jmm.0.04998-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error