1887

Abstract

Terminal restriction fragment-length polymorphism (T-RFLP) analysis was applied to characterize oral bacterial flora in saliva from 18 healthy subjects and 18 patients with periodontitis. The 16S rRNA genes (rDNAs) of oral bacteria and spirochaetes in saliva were amplified by PCR with a 6′carboxy-fluorescein (6-FAM)-labelled universal forward primer (27F) and a universal reverse primer (1492R) or the -selective reverse primer. The 16S rDNAs were digested with restriction enzymes with 4 bp recognition sites (I or I) and analysed by using an automated DNA sequencer. T-RFLP patterns were numerically analysed using a computer program. From analysis of the oral bacterial community, patterns derived from periodontally healthy subjects and patients with periodontitis were grouped into different clusters, though with some uncertainty. Samples from patients with periodontitis tended to cluster into their respective types (aggressive and chronic periodontitis), although this was not very clear. Analysis of spirochaetal community using T-RFLP showed that the patterns derived from patients with periodontitis were grouped more as compared with the analysis of the oral bacterial community. These results suggest that samples from patients with periodontitis contain an unexpected diversity. T-RFLP patterns of 16S rDNAs from saliva samples of two periodontally healthy subjects over a 5-week period showed host-specific relatively stable oral bacterial flora. Our study indicates that T-RFLP analysis is useful for the assessment of diversity of oral bacterial flora and rapid comparison of the community structure between subjects with and without periodontitis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.04991-0
2003-01-01
2019-12-07
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/1/79.html?itemId=/content/journal/jmm/10.1099/jmm.0.04991-0&mimeType=html&fmt=ahah

References

  1. Bernhard, A. E. & Field, K. G. ( 2000;). Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Appl Environ Microbiol 66, 1587–1594.[CrossRef]
    [Google Scholar]
  2. Choi, B. K., Paster, B. J., Dewhirst, F. E. & Göbel, U. B. ( 1994;). Diversity of cultivable and uncultivable oral spirochetes from a patient with severe destructive periodontitis. Infect Immun 62, 1889–1895.
    [Google Scholar]
  3. Choi, B. K., Wyss, C. & Göbel, U. B. ( 1996;). Phylogenetic analysis of pathogen-related oral spirochetes. J Clin Microbiol 34, 1922–1925.
    [Google Scholar]
  4. Choi, B. K., Nattermann, H., Grund, S., Haider, W. & Göbel, U. B. ( 1997;). Spirochetes from digital dermatitis lesions in cattle are closely related to treponemes associated with human periodontitis. Int J Syst Bacteriol 47, 175–181.[CrossRef]
    [Google Scholar]
  5. Clement, B. G., Kehl, L. E., DeBord, K. L. & Kitts, C. L. ( 1998;). Terminal restriction fragment patterns (TRFPs), a rapid, PCR-based method for the comparison of complex bacterial communities. J Microbiol Methods 31, 135–142.[CrossRef]
    [Google Scholar]
  6. Dewhirst, F. E., Tamer, M. A., Ericson, R. E., Lau, C. N., Levanos, V. A., Boches, S. K., Galvin, J. L. & Paster, B. J. ( 2000;). The diversity of periodontal spirochetes by 16S rRNA analysis. Oral Microbiol Immunol 15, 196–202.[CrossRef]
    [Google Scholar]
  7. Dewhirst, F. E., Paster, B. J., Tzellas, N., Coleman, B., Downes, J., Spratt, D. A. & Wade, W. G. ( 2001;). Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of Olsenella gen. nov., reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov. Int J Syst Evol Microbiol 51, 1797–1804.[CrossRef]
    [Google Scholar]
  8. Dunbar, J., Ticknor, L. O. & Kuske, C. R. ( 2000;). Assessment of microbial diversity in four southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl Environ Microbiol 66, 2943–2950.[CrossRef]
    [Google Scholar]
  9. Dymock, D., Weightman, A. J., Scully, C. & Wade, W. G. ( 1996;). Molecular analysis of microflora associated with dentoalveolar abscesses. J Clin Microbiol 34, 537–542.
    [Google Scholar]
  10. Farrelly, V., Rainey, F. A. & Stackebrandt, E. ( 1995;). Effect of genome size and rrn gene copy number on PCR amplification of 16S rRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61, 2798–2801.
    [Google Scholar]
  11. Gonzàlez, J. M., Simó, R., Massana, R., Covert, J. S., Casamayor, E. O., Pedros-Alio, C. & Moran, M. A. ( 2000;). Bacterial community structure associated with a dimethylsulfonipropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66, 4237–4246.[CrossRef]
    [Google Scholar]
  12. Hiraishi, A., Morishima, Y. & Takeuchi, J. ( 1991;). Numerical analysis of lipoquinone patterns in monitoring bacterial community dynamics in wastewater treatment systems. J Gen Appl Microbiol 37, 57–70.[CrossRef]
    [Google Scholar]
  13. Hiraishi, A., Kamagata, Y. & Nakamura, K. ( 1995;). Polymerase chain reaction amplification and restriction fragment length polymorphism analysis of 16S rRNA genes from methanogens. J Ferment Bioeng 79, 523–529.[CrossRef]
    [Google Scholar]
  14. Hiraishi, A., Iwasaki, M. & Shinjo, H. ( 2000;). Terminal restriction pattern analysis of 16S rRNA genes for the characterization of bacterial communities of activated sludge. J Biosci Bioeng 90, 148–156.[CrossRef]
    [Google Scholar]
  15. Iida, T., Ohkuma, M., Ohtoko, K. & Kudo, T. ( 2000;). Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol Ecol 34, 17–26.[CrossRef]
    [Google Scholar]
  16. Iwasaki, M. & Hiraishi, A. ( 1998;). A new approach to numerical analyses of microbial quinone profiles in the environment. Microbes Environ 13, 67–76.[CrossRef]
    [Google Scholar]
  17. Kaplan, C. W., Astaire, J. C., Sanders, M. E., Reddy, B. S. & Kitts, C. L. ( 2001;). 16S ribosomal DNA terminal restriction fragment pattern analysis of bacterial communities in feces of rats fed Lactobacillus acidophilus NCFM. Appl Environ Microbiol 67, 1935–1939.[CrossRef]
    [Google Scholar]
  18. Kitts, C. L. ( 2001;). Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2, 17–25.
    [Google Scholar]
  19. Kroes, I., Lepp, P. W. & Relman, D. A. ( 1999;). Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A 96, 14547–14552.[CrossRef]
    [Google Scholar]
  20. Lane, D. J. (1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  21. Leser, T. D., Lindecrona, R. H., Jensen, T. K., Jensen, B. B. & Møller, K. ( 2000;). Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with Brachyspira hyodysenteriae. Appl Environ Microbiol 66, 3290–3296.[CrossRef]
    [Google Scholar]
  22. Lilburn, T. G., Schmidt, T. M. & Breznak, J. A. ( 1999;). Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1, 331–345.[CrossRef]
    [Google Scholar]
  23. Liu, W.–T., Marsh, T. L., Cheng, H. & Forney, L. J. ( 1997;). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63, 4516–4522.
    [Google Scholar]
  24. Lukow, T., Dunfield, P. F. & Liesack, W. ( 2000;). Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol 32, 241–247.[CrossRef]
    [Google Scholar]
  25. Marsh, T. L. ( 1999;). Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2, 323–327.[CrossRef]
    [Google Scholar]
  26. Marsh, T. L., Saxman, P., Cole, J. & Tiedje, J. ( 2000;). Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl Environ Microbiol 66, 3616–3620.[CrossRef]
    [Google Scholar]
  27. Moeseneder, M. M., Arrieta, J. M., Muyzer, G., Winter, C. & Herndl, G. J. ( 1999;). Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol 65, 3518–3525.
    [Google Scholar]
  28. Moyer, C. L., Tiedje, J. M., Dobbs, F. C. & Karl, D. M. ( 1996;). A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature. Appl Environ Microbiol 62, 2501–2507.
    [Google Scholar]
  29. Osborn, A. M., Moore, E. R. B. & Timmis, K. N. ( 2000;). An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2, 39–50.[CrossRef]
    [Google Scholar]
  30. Page, R. D. M. ( 1996;). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  31. Paster, B. J., Dewhirst, F. E., Cooke, S. M., Fussing, V., Poulsen, L. K. & Breznak, J. A. ( 1996;). Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 62, 347–352.
    [Google Scholar]
  32. Paster, B. J., Boches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., Sahasrabudhe, A. & Dewhirst, F. E. ( 2001;). Bacterial diversity in human subgingival plaque. J Bacteriol 183, 3770–3783.[CrossRef]
    [Google Scholar]
  33. Saitou, N. & Nei, M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  34. Sakamoto, M., Takeuchi, Y., Umeda, M., Ishikawa, I., Benno, Y. & Nakase, T. ( 1999;). Detection of Treponema socranskii associated with human periodontitis by PCR. Microbiol Immunol 43, 485–490.[CrossRef]
    [Google Scholar]
  35. Sakamoto, M., Umeda, M., Ishikawa, I. & Benno, Y. ( 2000;). Comparison of the oral bacterial flora in saliva from a healthy subject and two periodontitis patients by sequence analysis of 16S rDNA libraries. Microbiol Immunol 44, 643–652.[CrossRef]
    [Google Scholar]
  36. Sakamoto, M., Takeuchi, Y., Umeda, M., Ishikawa, I. & Benno, Y. ( 2001;). Rapid detection and quantification of five periodontopathic bacteria by real-time PCR. Microbiol Immunol 45, 39–44.[CrossRef]
    [Google Scholar]
  37. Sakamoto, M., Suzuki, M., Umeda, M., Ishikawa, I. & Benno, Y. ( 2002;). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 841–849.[CrossRef]
    [Google Scholar]
  38. Spratt, D. A., Weightman, A. J. & Wade, W. G. ( 1999;). Diversity of oral asaccharolytic Eubacterium species in periodontitis–identification of novel phylotypes representing uncultivated taxa. Oral Microbiol Immunol 14, 56–59.[CrossRef]
    [Google Scholar]
  39. Suzuki, M. T. & Giovannoni, S. J. ( 1996;). Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol 62, 625–630.
    [Google Scholar]
  40. Umeda, M., Contreras, A., Chen, C., Bakker, I. & Slots, J. ( 1998;). The utility of whole saliva to detect the oral presence of periodontopathic bacteria. J Periodontol 69, 828–833.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.04991-0
Loading
/content/journal/jmm/10.1099/jmm.0.04991-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error