1887

Abstract

During the first quarter of 1996, a major outbreak of clinical infection caused by multiresistant (MRKP) occurred in the neonatal ward of the ‘Maternité Wassila Bourguiba’ in Tunis, Tunisia. In total, 32 isolates of MRKP, comprising 23 clinical isolates and nine surveillance isolates, were recovered during this period and analysed for epidemiological relatedness. The isolates were compared with 17 other isolates of MRKP that were recovered during 1995. Macrorestriction profiles of total genomic DNA following I restriction endonuclease digestion were analysed by PFGE; this typing classified 56 % of the 32 isolates recovered in 1996 into two major clusters. Cluster A included ten isolates from 1996 and three isolates recovered in 1995, whereas cluster B included eight isolates from the outbreak of 1996. The remaining isolates were genetically unrelated to those of clusters A and B; they constituted sporadic strains. The two major clusters were also evident using other molecular typing methods, such as random amplification of polymorphic DNA (RAPD) and enterobacterial repetitive intergenic consensus (ERIC)-PCR , where isolates of clusters A and B could be identified on the basis of their discriminative patterns. This investigation showed the predominance of two epidemic strains, and illustrated the ease with which MRKP strains can disseminate and persist within a single ward.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.04981-0
2003-05-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jmm/52/5/JM520511.html?itemId=/content/journal/jmm/10.1099/jmm.0.04981-0&mimeType=html&fmt=ahah

References

  1. Ahmad, M., Urban, C., Mariano, N., Bradford, P. A., Calcagni, E., Projan, S. J., Bush, K. & Rahal, J. J. ( 1999;). Clinical characteristics and molecular epidemiology associated with imipenem-resistant Klebsiella pneumoniae. Clin Infect Dis 29, 352–355.[CrossRef]
    [Google Scholar]
  2. Asensio, A., Oliver, A., González-Diego, P. & 7 other authors ( 2000;). Outbreak of a multiresistant Klebsiella pneumoniae strain in an intensive care unit: antibiotic use as risk factor for colonization and infection. Clin Infect Dis 30, 55–60.[CrossRef]
    [Google Scholar]
  3. Ben Hassen, A., Fournier, G., Kechrid, A., Fendri, C., Ben Redjeb, S. & Philippon, A. ( 1990;). Résistance enzymatique au céfotaxime chez cinquante-six souches de Klebsiella spp., Escherichia coli et Salmonella spp. dans un hôpital tunisien 1984–1988. Pathol Biol 38, 464–469 (in French).
    [Google Scholar]
  4. Bingen, E. H., Desjardins, P., Arlet, G., Bourgeois, F., Mariani-Kurkdjian, P., Lambert-Zechovsky, N. Y., Denamur, E., Philippon, A. & Elion, J. ( 1993;). Molecular epidemiology of plasmid spread among extended broad-spectrum β-lactamase-producing Klebsiella pneumoniae isolates in a pediatric hospital. J Clin Microbiol 31, 179–184.
    [Google Scholar]
  5. Branger, C., Bruneau, B., Lesimple, A. L., Bouvet, P. J., Berry, P., Sevali-Garcia, J. & Lambert-Zechovsky, N. ( 1997;). Epidemiological typing of extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates responsible for five outbreaks in a university hospital. J Hosp Infect 36, 23–36.[CrossRef]
    [Google Scholar]
  6. Branger, C., Lesimple, A. L., Bruneau, B., Berry, P. & Lambert-Zechovsky, N. ( 1998;). Long-term investigation of the clonal dissemination of Klebsiella pneumoniae isolates producing extended-spectrum β-lactamases in a university hospital. J Med Microbiol 47, 201–209.[CrossRef]
    [Google Scholar]
  7. Chabbert, Y. ( 1982;). Sensibilité bactérienne aux antibiotiques. In Bactériologie Médicale, pp. 204–212. Edited by L. Le Minor & M. Veron. Paris: Flammarion (in French).
  8. Chen, W.-P. & Kuo, T.-T. ( 1993;). A simple and rapid method for the preparation of Gram-negative bacterial genomic DNA. Nucleic Acids Res 21, 2260. 2260.[CrossRef]
    [Google Scholar]
  9. Communiqué de l'Antibiogramme de la Société Française de Microbiologie ( 1994;). Communiqué 1994. Pathol Biol 42, I–VIII (in French).
    [Google Scholar]
  10. Decré, D., Gachot, B., Lucet, J. C., Arlet, G., Bergogne-Bérézin, E. & Régnier, B. ( 1998;). Clinical and bacteriologic epidemiology of extended-spectrum β-lactamase-producing strains of Klebsiella pneumoniae in a medical intensive care unit. Clin Infect Dis 27, 834–844.[CrossRef]
    [Google Scholar]
  11. Eisen, D., Russell, E. G., Tymms, M., Roper, E. J., Grayson, M. L. & Turnidge, J. ( 1995;). Random amplified polymorphic DNA and plasmid analyses used in investigation of an outbreak of multiresistant Klebsiella pneumoniae. J Clin Microbiol 33, 713–717.
    [Google Scholar]
  12. French, G. L., Shannon, K. P. & Simmons, N. ( 1996;). Hospital outbreak of Klebsiella pneumoniae resistant to broad-spectrum cephalosporins and β-lactam–β-lactamase inhibitor combinations by hyperproduction of SHV-5 β-lactamase. J Clin Microbiol 34, 358–363.
    [Google Scholar]
  13. Gniadkowski, M., Palucha, A., Grzesiowski, P. & Hryniewicz, W. ( 1998;). Outbreak of ceftazidime-resistant Klebsiella pneumoniae in a pediatric hospital in Warsaw, Poland: clonal spread of the TEM-47 extended-spectrum β-lactamase (ESBL)-producing strain and transfer of a plasmid carrying the SHV-5-like ESBL-encoding gene. Antimicrob Agents Chemother 42, 3079–3085.
    [Google Scholar]
  14. Gori, A., Espinasse, F., Deplano, A., Nonhoff, C., Nicolas, M. H. & Struelens, M. J. ( 1996;). Comparison of pulsed-field gel electrophoresis and randomly amplified DNA polymorphism analysis for typing extended-spectrum-β-lactamase-producing Klebsiella pneumoniae. J Clin Microbiol 34, 2448–2453.
    [Google Scholar]
  15. Gouby, A., Neuwirth, C., Bourg, G., Bouziges, N., Carles-Nurit, M. J., Despaux, E. & Ramuz, M. ( 1994;). Epidemiological study by pulsed-field gel electrophoresis of an outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a geriatric hospital. J Clin Microbiol 32, 301–305.
    [Google Scholar]
  16. Hammami, A., Arlet, G., Ben Redjeb, S., Grimont, F., Ben Hassen, A., Rekik, A. & Philippon, A. ( 1991;). Nosocomial outbreak of acute gastroenteritis in a neonatal intensive care unit in Tunisia caused by multiply drug resistant Salmonella wien producing SHV-2 β-lactamase. Eur J Clin Microbiol Infect Dis 10, 641–646.[CrossRef]
    [Google Scholar]
  17. Hart, C. A. ( 1993;). Klebsiellae and neonates. J Hosp Infect 23, 83–86.[CrossRef]
    [Google Scholar]
  18. Jarlier, V., Nicolas, M. H., Fournier, G. & Philippon, A. ( 1988;). Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis 10, 867–878.[CrossRef]
    [Google Scholar]
  19. Nouvellon, M., Pons, J.-L., Sirot, D., Combe, M.-L. & Lemeland, J.-F. ( 1994;). Clonal outbreaks of extended-spectrum β-lactamase-producing strains of Klebsiella pneumoniae demonstrated by antibiotic susceptibility testing, β-lactamase typing, and multilocus enzyme electrophoresis. J Clin Microbiol 32, 2625–2627.
    [Google Scholar]
  20. Peña, C., Pujol, M., Ardanuy, C., Ricart, A., Pallares, R., Liñares, J., Ariza, J. & Gudiol, F. ( 1998;). Epidemiology and successful control of a large outbreak due to Klebsiella pneumoniae producing extended-spectrum β-lactamases. Antimicrob Agents Chemother 42, 53–58.
    [Google Scholar]
  21. Philippon, A., Ben Redjeb, S., Fournier, G. & Ben Hassen, A. ( 1989;). Epidemiology of extended spectrum β-lactamases. Infection 17, 347–354.[CrossRef]
    [Google Scholar]
  22. Podschun, R. & Ullmann, U. ( 1998;). Klebsiella spp.as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11, 589–603.
    [Google Scholar]
  23. Poh, C. L., Yap, S. C. & Yeo, M. ( 1993;). Pulsed-field gel electrophoresis for differentiation of hospital isolates of Klebsiella pneumoniae. J Hosp Infect 24, 123–128.[CrossRef]
    [Google Scholar]
  24. Shannon, K., Fung, K., Stapleton, P., Anthony, R., Power, E. & French, G. ( 1998;). A hospital outbreak of extended-spectrum β-lactamase-producing Klebsiella pneumoniae investigated by RAPD typing and analysis of the genetics and mechanisms of resistance. J Hosp Infect 39, 291–300.[CrossRef]
    [Google Scholar]
  25. Tenover, F. C., Arbeit, R. D., Goering, R. V., Mickelsen, P. A., Murray, B. E., Persing, D. H. & Swaminathan, B. ( 1995;). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33, 2233–2239.
    [Google Scholar]
  26. van Belkum, A., Kluytmans, J., van Leeuwen, W. & 16 other authors ( 1995;). Multicenter evaluation of arbitrarily primed PCR for typing of Staphylococcus aureus strains. J Clin Microbiol 33, 1537–1547.
    [Google Scholar]
  27. Versalovic, J., Koeuth, T. & Lupski, J. R. ( 1991;). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19, 6823–6831.[CrossRef]
    [Google Scholar]
  28. Weller, T. M. A., Mackenzie, F. M. & Forbes, K. J. ( 1997;). Molecular epidemiology of a large outbreak of multiresistant Klebsiella pneumoniae. J Med Microbiol 46, 921–926.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.04981-0
Loading
/content/journal/jmm/10.1099/jmm.0.04981-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error