1887

Abstract

Molecular typing of is routinely performed on bacterial isolates, but not on DNA extracted from nasopharyngeal aspirates or pernasal swabs submitted for diagnostic real-time PCR (qPCR). We investigated whether these DNA extracts were suitable for multilocus variable-number tandem repeat analysis (MLVA) and DNA sequence-based typing. We analysed all the available qPCR-positive samples received by our laboratory from patients <1 year of age between January 2008 and August 2010. Eighty-one per cent (106/131) of these generated a complete MLVA profile. This rose to 92 % (105/114) if only samples positive for both of the two targets used for the PCR (insertion element IS and pertussis toxin promoter ) were analysed. Sequence-based typing of the pertactin, pertussis toxin S1 subunit and pertussis promoter regions (, and ) was attempted on 89 of the DNA extracts that had generated a full MLVA profile. Eighty-three (93 %) of these produced complete sequences for all three targets. Comparison of molecular typing data from the 89 extracts with those from 111 contemporary bacterial isolates showed that the two sources yielded the same picture of the population [dominated by the MLVA-27 (2) (1) (3) clonal type]. There was no significant difference in MLVA type distribution or diversity between the two sample sets. This suggests that clinical extracts can be used in place of, or to complement, bacterial cultures for typing purposes (at least, in this age group). With small modifications to methodology, generating MLVA and sequence-based typing data from qPCR-positive clinical DNA extracts is likely to generate a complete dataset in the majority of samples from the <1 year age group. Its success with samples from older subjects remains to be seen. However, our data suggest that it is suitable for inclusion in molecular epidemiological studies of the population or as a tool in outbreak investigations.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.049585-0
2012-12-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/12/1662.html?itemId=/content/journal/jmm/10.1099/jmm.0.049585-0&mimeType=html&fmt=ahah

References

  1. Bottero D. , Gaillard M. E. , Fingermann M. , Weltman G. , Fernández J. , Sisti F. , Graieb A. , Roberts R. , Rico O. . & other authors ( 2007; ). Pulsed-field gel electrophoresis, pertactin, pertussis toxin S1 subunit polymorphisms, and surfaceome analysis of vaccine and clinical Bordetella pertussis strains. . Clin Vaccine Immunol 14:, 1490–1498. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bouchez V. , Brun D. , Cantinelli T. , Dore G. , Njamkepo E. , Guiso N. . ( 2009; ). First report and detailed characterization of B. pertussis isolates not expressing pertussis toxin or pertactin. . Vaccine 27:, 6034–6041. [CrossRef] [PubMed]
    [Google Scholar]
  3. Boursaux-Eude C. , Thiberge S. , Carletti G. , Guiso N. . ( 1999; ). Intranasal murine model of Bordetella pertussis infection: II. Sequence variation and protection induced by a tricomponent acellular vaccine. . Vaccine 17:, 2651–2660. [CrossRef] [PubMed]
    [Google Scholar]
  4. Campbell H. , Amirthalingam G. , Andrews N. , Fry N. K. , George R. C. , Harrison T. G. , Miller E. . ( 2012; ). Accelerating control of pertussis in England and Wales. . Emerg Infect Dis 18:, 38–47. [CrossRef] [PubMed]
    [Google Scholar]
  5. Celentano L. P. , Massari M. , Paramatti D. , Salmaso S. , Tozzi A. E. . the EUVAC-NET Group ( 2005; ). Resurgence of pertussis in Europe. . Pediatr Infect Dis J 24:, 761–765. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chan W.-F. , Maharjan R. P. , Reeves P. R. , Sintchenko V. , Gilbert G. L. , Lan R. . ( 2009; ). Rapid and accurate typing of Bordetella pertussis targeting genes encoding acellular vaccine antigens using real time PCR and High Resolution Melt analysis. . J Microbiol Methods 77:, 326–329. [CrossRef] [PubMed]
    [Google Scholar]
  7. Denoël P. , Godfroid F. , Guiso N. , Hallander H. , Poolman J. . ( 2005; ). Comparison of acellular pertussis vaccines-induced immunity against infection due to Bordetella pertussis variant isolates in a mouse model. . Vaccine 23:, 5333–5341. [CrossRef] [PubMed]
    [Google Scholar]
  8. Fry N. K. , Duncan J. , Wagner K. , Tzivra O. , Doshi N. , Litt D. J. , Crowcroft N. , Miller E. , George R. C. , Harrison T. G. . ( 2009; ). Role of PCR in the diagnosis of pertussis infection in infants: 5 years’ experience of provision of a same-day real-time PCR service in England and Wales from 2002 to 2007. . J Med Microbiol 58:, 1023–1029. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gzyl A. , Augustynowicz E. , Gniadek G. , Rabczenko D. , Dulny G. , Ślusarczyk J. . ( 2004; ). Sequence variation in pertussis S1 subunit toxin and pertussis genes in Bordetella pertussis strains used for the whole-cell pertussis vaccine produced in Poland since 1960: efficiency of the DTwP vaccine-induced immunity against currently circulating B. pertussis isolates. . Vaccine 22:, 2122–2128. [CrossRef] [PubMed]
    [Google Scholar]
  10. Hegerle N. , Paris A.-S. , Brun D. , Dore G. , Njamkepo E. , Guillot S. , Guiso N. . ( 2012; ). Evolution of French Bordetella pertussis and Bordetella parapertussis isolates: increase of Bordetellae not expressing pertactin. . Clin Microbiol Infect 18:, E340–E346 [CrossRef]
    [Google Scholar]
  11. King A. J. , Berbers G. , van Oirschot H. F. L. M. , Hoogerhout P. , Knipping K. , Mooi F. R. . ( 2001; ). Role of the polymorphic region 1 of the Bordetella pertussis protein pertactin in immunity. . Microbiology 147:, 2285–2289.[PubMed]
    [Google Scholar]
  12. Komatsu E. , Yamaguchi F. , Abe A. , Weiss A. A. , Watanabe M. . ( 2010; ). Synergic effect of genotype changes in pertussis toxin and pertactin on adaptation to an acellular pertussis vaccine in the murine intranasal challenge model. . Clin Vaccine Immunol 17:, 807–812. [CrossRef] [PubMed]
    [Google Scholar]
  13. Litt D. J. , Neal S. E. , Fry N. K. . ( 2009; ). Changes in genetic diversity of the Bordetella pertussis population in the United Kingdom between 1920 and 2006 reflect vaccination coverage and emergence of a single dominant clonal type. . J Clin Microbiol 47:, 680–688. [CrossRef] [PubMed]
    [Google Scholar]
  14. Mäkinen J. , Mertsola J. , Viljanen M. K. , Arvilommi H. , He Q. . ( 2002; ). Rapid typing of Bordetella pertussis pertussis toxin gene variants by LightCycler real-time PCR and fluorescence resonance energy transfer hybridization probe melting curve analysis. . J Clin Microbiol 40:, 2213–2216. [CrossRef] [PubMed]
    [Google Scholar]
  15. Mattoo S. , Cherry J. D. . ( 2005; ). Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. . Clin Microbiol Rev 18:, 326–382. [CrossRef] [PubMed]
    [Google Scholar]
  16. Mooi F. R. . ( 2010; ). Bordetella pertussis and vaccination: the persistence of a genetically monomorphic pathogen. . Infect Genet Evol 10:, 36–49. [CrossRef] [PubMed]
    [Google Scholar]
  17. Mooi F. R. , He Q. , van Oirschot H. , Mertsola J. . ( 1999; ). Variation in the Bordetella pertussis virulence factors pertussis toxin and pertactin in vaccine strains and clinical isolates in Finland. . Infect Immun 67:, 3133–3134.[PubMed]
    [Google Scholar]
  18. Mooi F. R. , Hallander H. , Wirsing von König C. H. , Hoet B. , Guiso N. . ( 2000; ). Epidemiological typing of Bordetella pertussis isolates: recommendations for a standard methodology. . Eur J Clin Microbiol Infect Dis 19:, 174–181. [CrossRef] [PubMed]
    [Google Scholar]
  19. Mooi F. R. , He Q. , Guiso N. . ( 2007; ). Phylogeny, evolution, and epidemiology of Bordetellae. . In Bordetella Molecular Microbiology, pp. 17–45. Edited by Locht C. . . Norfolk, UK:: Horizon Bioscience;.
    [Google Scholar]
  20. Mooi F. R. , van Loo I. H. M. , van Gent M. , He Q. , Bart M. J. , Heuvelman K. J. , de Greeff S. C. , Diavatopoulos D. , Teunis P. . & other authors ( 2009; ). Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. . Emerg Infect Dis 15:, 1206–1213. [CrossRef] [PubMed]
    [Google Scholar]
  21. Muyldermans G. , Soetens O. , Antoine M. , Bruisten S. , Vincart B. , Doucet-Populaire F. , Fry N. K. , Olcén P. , Scheftel J. M. . & other authors ( 2005; ). External quality assessment for molecular detection of Bordetella pertussis in European laboratories. . J Clin Microbiol 43:, 30–35. [CrossRef] [PubMed]
    [Google Scholar]
  22. Nakamura Y. , Kamachi K. , Toyoizumi-Ajisaka H. , Otsuka N. , Saito R. , Tsuruoka J. , Katsuta T. , Nakajima N. , Okada K. . & other authors ( 2011; ). Marked difference between adults and children in Bordetella pertussis DNA load in nasopharyngeal swabs. . Clin Microbiol Infect 17:, 365–370. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ntezayabo B. , De Serres G. , Duval B. . ( 2003; ). Pertussis resurgence in Canada largely caused by a cohort effect. . Pediatr Infect Dis J 22:, 22–27. [CrossRef] [PubMed]
    [Google Scholar]
  24. Octavia S. , Maharjan R. P. , Sintchenko V. , Stevenson G. , Reeves P. R. , Gilbert G. L. , Lan R. . ( 2011; ). Insight into evolution of Bordetella pertussis from comparative genomic analysis: evidence of vaccine-driven selection. . Mol Biol Evol 28:, 707–715. [CrossRef] [PubMed]
    [Google Scholar]
  25. Packard E. R. , Parton R. , Coote J. G. , Fry N. K. . ( 2004; ). Sequence variation and conservation in virulence-related genes of Bordetella pertussis isolates from the UK. . J Med Microbiol 53:, 355–365. [CrossRef] [PubMed]
    [Google Scholar]
  26. Parkhill J. , Sebaihia M. , Preston A. , Murphy L. D. , Thomson N. , Harris D. E. , Holden M. T. G. , Churcher C. M. , Bentley S. D. . & other authors ( 2003; ). Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica . . Nat Genet 35:, 32–40. [CrossRef] [PubMed]
    [Google Scholar]
  27. Poynten M. , McIntyre P. B. , Mooi F. R. , Heuvelman K. J. , Gilbert G. L. . ( 2004; ). Temporal trends in circulating Bordetella pertussis strains in Australia. . Epidemiol Infect 132:, 185–193. [CrossRef] [PubMed]
    [Google Scholar]
  28. Register K. B. , Sanden G. N. . ( 2006; ). Prevalence and sequence variants of IS481 in Bordetella bronchiseptica: implications for IS481-based detection of Bordetella pertussis . . J Clin Microbiol 44:, 4577–4583. [CrossRef] [PubMed]
    [Google Scholar]
  29. Reischl U. , Lehn N. , Sanden G. N. , Loeffelholz M. J. . ( 2001; ). Real-time PCR assay targeting IS481 of Bordetella pertussis and molecular basis for detecting Bordetella holmesii . . J Clin Microbiol 39:, 1963–1966. [CrossRef] [PubMed]
    [Google Scholar]
  30. Riffelmann M. , Wirsing von König C. H. , Caro V. , Guiso N. . the Pertussis PCR Consensus Group ( 2005; ). Nucleic acid amplification tests for diagnosis of Bordetella infections. . J Clin Microbiol 43:, 4925–4929. [CrossRef] [PubMed]
    [Google Scholar]
  31. Robinson A. , Gorringe A. R. , Funnell S. G. , Fernandez M. . ( 1989; ). Serospecific protection of mice against intranasal infection with Bordetella pertussis . . Vaccine 7:, 321–324. [CrossRef] [PubMed]
    [Google Scholar]
  32. Schouls L. M. , van der Heide H. G. J. , Vauterin L. , Vauterin P. , Mooi F. R. . ( 2004; ). Multiple-locus variable-number tandem repeat analysis of Dutch Bordetella pertussis strains reveals rapid genetic changes with clonal expansion during the late 1990s. . J Bacteriol 186:, 5496–5505. [CrossRef] [PubMed]
    [Google Scholar]
  33. Tanaka M. , Vitek C. R. , Pascual F. B. , Bisgard K. M. , Tate J. E. , Murphy T. V. . ( 2003; ). Trends in pertussis among infants in the United States, 1980-1999. . JAMA 290:, 2968–2975. [CrossRef] [PubMed]
    [Google Scholar]
  34. Tsang R. S. W. , Lau A. K. H. , Sill M. L. , Halperin S. A. , Van Caeseele P. , Jamieson F. , Martin I. E. . ( 2004; ). Polymorphisms of the fimbria fim3 gene of Bordetella pertussis strains isolated in Canada. . J Clin Microbiol 42:, 5364–5367. [CrossRef] [PubMed]
    [Google Scholar]
  35. van Gent M. , Bart M. J. , van der Heide H. G. J. , Heuvelman K. J. , Kallonen T. , He Q. , Mertsola J. , Advani A. , Hallander H. O. . & other authors ( 2011; ). SNP-based typing: a useful tool to study Bordetella pertussis populations. . PLoS ONE 6:, e20340. [CrossRef] [PubMed]
    [Google Scholar]
  36. van Loo I. H. M. , Heuvelman K. J. , King A. J. , Mooi F. R. . ( 2002; ). Multilocus sequence typing of Bordetella pertussis based on surface protein genes. . J Clin Microbiol 40:, 1994–2001. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.049585-0
Loading
/content/journal/jmm/10.1099/jmm.0.049585-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error