1887

Abstract

is a Gram-positive intracellular pathogen that is responsible for listeriosis, a potentially fatal, food-borne illness. Due to its cytoplasmic location during infection, this pathogen can mediate a long-lasting cellular immune response, which makes attenuated strains strong candidates for vaccine development. Recently, our group identified and characterized (Fur-regulated virulence factor A), and deletion of this gene resulted in disruption of iron homeostasis and a strong attenuation in virulence. Despite significant attenuation in the mouse infection model, the mutant was capable of intracellular growth in antigen-presenting cells. Indeed, mice immunized with Δ were able to effectively stimulate specific CD8 T cells to the listerial epitopes LLO and P60 at levels comparable with strain EGDe. Most notably, mice immunized with Δ then subsequently challenged with the wild-type strain were completely protected from listerial infection. On the basis of these results, we advocate the use of Δ as a live attenuated listerial vaccine, and propose that this mutant may serve as a platform for the development of a future vaccine delivery vehicle.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.049114-0
2013-02-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/2/185.html?itemId=/content/journal/jmm/10.1099/jmm.0.049114-0&mimeType=html&fmt=ahah

References

  1. Álvarez B. , Álvarez J. , Menéndez A. , Guijarro J. A. . ( 2008; ). A mutant in one of two exbD loci of a TonB system in Flavobacterium psychrophilum shows attenuated virulence and confers protection against cold water disease. . Microbiology 154:, 1144–1151. [CrossRef] [PubMed]
    [Google Scholar]
  2. Angelakopoulos H. , Loock K. , Sisul D. M. , Jensen E. R. , Miller J. F. , Hohmann E. L. . ( 2002; ). Safety and shedding of an attenuated strain of Listeria monocytogenes with a deletion of actA/plcB in adult volunteers: a dose escalation study of oral inoculation. . Infect Immun 70:, 3592–3601. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bahey-El-Din M. , Casey P. G. , Griffin B. T. , Gahan C. G. . ( 2008; ). Lactococcus lactis-expressing listeriolysin O (LLO) provides protection and specific CD8+ T cells against Listeria monocytogenes in the murine infection model. . Vaccine 26:, 5304–5314. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bahey-El-Din M. , Casey P. G. , Griffin B. T. , Gahan C. G. . ( 2010; ). Expression of two Listeria monocytogenes antigens (P60 and LLO) in Lactococcus lactis and examination for use as live vaccine vectors. . J Med Microbiol 59:, 904–912. [CrossRef] [PubMed]
    [Google Scholar]
  5. Busch D. H. , Pilip I. M. , Vijh S. , Pamer E. G. . ( 1998; ). Coordinate regulation of complex T cell populations responding to bacterial infection. . Immunity 8:, 353–362. [CrossRef] [PubMed]
    [Google Scholar]
  6. Cabanes D. , Dehoux P. , Dussurget O. , Frangeul L. , Cossart P. . ( 2002; ). Surface proteins and the pathogenic potential of Listeria monocytogenes . . Trends Microbiol 10:, 238–245. [CrossRef] [PubMed]
    [Google Scholar]
  7. Carvalho L. H. , Hafalla J. C. R. , Zavala F. . ( 2001; ). ELISPOT assay to measure antigen-specific murine CD8+ T cell responses. . J Immunol Methods 252:, 207–218. [CrossRef] [PubMed]
    [Google Scholar]
  8. Domínguez-Bernal G. , Tierrez A. , Bartolomé A. , Martínez-Pulgarín S. , Salguero F. J. , Antonio Orden J. , de la Fuente R. . ( 2008; ). Salmonella enterica serovar Choleraesuis derivatives harbouring deletions in rpoS and phoP regulatory genes are attenuated in pigs, and survive and multiply in porcine intestinal macrophages and fibroblasts, respectively. . Vet Microbiol 130:, 298–311. [CrossRef] [PubMed]
    [Google Scholar]
  9. Edelson B. T. , Unanue E. R. . ( 2000; ). Immunity to Listeria infection. . Curr Opin Immunol 12:, 425–431. [CrossRef] [PubMed]
    [Google Scholar]
  10. Fouts T. R. , DeVico A. L. , Onyabe D. Y. , Shata M. T. , Bagley K. C. , Lewis G. K. , Hone D. M. . ( 2003; ). Progress toward the development of a bacterial vaccine vector that induces high-titer long-lived broadly neutralizing antibodies against HIV-1. . FEMS Immunol Med Microbiol 37:, 129–134. [CrossRef] [PubMed]
    [Google Scholar]
  11. Glaser P. , Frangeul L. , Buchrieser C. , Rusniok C. , Amend A. , Baquero F. , Berche P. , Bloecker H. , Brandt P. . & other authors ( 2001; ). Comparative genomics of Listeria species. . Science 294:, 849–852.[PubMed]
    [Google Scholar]
  12. Hess J. , Gentschev I. , Miko D. , Welzel M. , Ladel C. , Goebel W. , Kaufmann S. H. . ( 1996; ). Superior efficacy of secreted over somatic antigen display in recombinant Salmonella vaccine induced protection against listeriosis. . Proc Natl Acad Sci U S A 93:, 1458–1463. [CrossRef] [PubMed]
    [Google Scholar]
  13. Jiang S. , Rasmussen R. A. , Nolan K. M. , Frankel F. R. , Lieberman J. , McClure H. M. , Williams K. M. , Babu U. S. , Raybourne R. B. . & other authors ( 2007; ). Live attenuated Listeria monocytogenes expressing HIV Gag: immunogenicity in rhesus monkeys. . Vaccine 25:, 7470–7479. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kaufmann S. H. E. . ( 1993; ). Immunity to intracellular bacteria. . Annu Rev Immunol 11:, 129–163. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kotton C. N. , Hohmann E. L. . ( 2004; ). Enteric pathogens as vaccine vectors for foreign antigen delivery. . Infect Immun 72:, 5535–5547. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kuklin N. A. , Clark D. J. , Secore S. , Cook J. , Cope L. D. , McNeely T. , Noble L. , Brown M. J. , Zorman J. K. . & other authors ( 2006; ). A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. . Infect Immun 74:, 2215–2223. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lieberman J. , Frankel F. R. . ( 2002; ). Engineered Listeria monocytogenes as an AIDS vaccine. . Vaccine 20:, 2007–2010. [CrossRef] [PubMed]
    [Google Scholar]
  18. Loeffler D. I. , Schoen C. U. , Goebel W. , Pilgrim S. . ( 2006; ). Comparison of different live vaccine strategies in vivo for delivery of protein antigen or antigen-encoding DNA and mRNA by virulence-attenuated Listeria monocytogenes . . Infect Immun 74:, 3946–3957. [CrossRef] [PubMed]
    [Google Scholar]
  19. Maas A. , Jacobsen I. D. , Meens J. , Gerlach G. F. . ( 2006; ). Use of an Actinobacillus pleuropneumoniae multiple mutant as a vaccine that allows differentiation of vaccinated and infected animals. . Infect Immun 74:, 4124–4132. [CrossRef] [PubMed]
    [Google Scholar]
  20. Maciag P. C. , Radulovic S. , Rothman J. . ( 2009; ). The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. . Vaccine 27:, 3975–3983. [CrossRef] [PubMed]
    [Google Scholar]
  21. McLaughlin H. P. , Hill C. , Gahan C. G. M. . ( 2011; ). The impact of iron on Listeria monocytogenes; inside and outside the host. . Curr Opin Biotechnol 22:, 194–199. [CrossRef] [PubMed]
    [Google Scholar]
  22. McLaughlin H. P. , Xiao Q. , Rea R. B. , Pi H. , Casey P. G. , Darby T. , Charbit A. , Sleator R. D. , Joyce S. A. . & other authors ( 2012; ). A putative P-type ATPase required for virulence and resistance to haem toxicity in Listeria monocytogenes . . PLoS ONE 7:, e30928. [CrossRef] [PubMed]
    [Google Scholar]
  23. Medina E. , Guzmán C. A. . ( 2001; ). Use of live bacterial vaccine vectors for antigen delivery: potential and limitations. . Vaccine 19:, 1573–1580. [CrossRef] [PubMed]
    [Google Scholar]
  24. Melief C. J. M. . ( 1992; ). Tumor eradication by adoptive transfer of cytotoxic T lymphocytes. . Adv Cancer Res 58:, 143–175. [CrossRef] [PubMed]
    [Google Scholar]
  25. Nelson K. E. , Fouts D. E. , Mongodin E. F. , Ravel J. , DeBoy R. T. , Kolonay J. F. , Rasko D. A. , Angiuoli S. V. , Gill S. R. . & other authors ( 2004; ). Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. . Nucleic Acids Res 32:, 2386–2395. [CrossRef] [PubMed]
    [Google Scholar]
  26. Pamer E. G. . ( 2004; ). Immune responses to Listeria monocytogenes . . Nat Rev Immunol 4:, 812–823. [CrossRef] [PubMed]
    [Google Scholar]
  27. Pilgrim S. , Stritzker J. , Schoen C. , Kolb-Mäurer A. , Geginat G. , Loessner M. J. , Gentschev I. , Goebel W. . ( 2003; ). Bactofection of mammalian cells by Listeria monocytogenes: improvement and mechanism of DNA delivery. . Gene Ther 10:, 2036–2045. [CrossRef] [PubMed]
    [Google Scholar]
  28. Schoen C. , Kolb-Mäurer A. , Geginat G. , Löffler D. , Bergmann B. , Stritzker J. , Szalay A. A. , Pilgrim S. , Goebel W. . ( 2005; ). Bacterial delivery of functional messenger RNA to mammalian cells. . Cell Microbiol 7:, 709–724. [CrossRef] [PubMed]
    [Google Scholar]
  29. Schoen C. , Loeffler D. I. , Frentzen A. , Pilgrim S. , Goebel W. , Stritzker J. . ( 2008; ). Listeria monocytogenes as novel carrier system for the development of live vaccines. . Int J Med Microbiol 298:, 45–58. [CrossRef] [PubMed]
    [Google Scholar]
  30. Starks H. , Bruhn K. W. , Shen H. , Barry R. A. , Dubensky T. W. , Brockstedt D. , Hinrichs D. J. , Higgins D. E. , Miller J. F. . & other authors ( 2004; ). Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. . J Immunol 173:, 420–427.[PubMed] [CrossRef]
    [Google Scholar]
  31. Stevens R. , Lavoy A. , Nordone S. , Burkhard M. , Dean G. A. . ( 2005; ). Pre-existing immunity to pathogenic Listeria monocytogenes does not prevent induction of immune responses to feline immunodeficiency virus by a novel recombinant Listeria monocytogenes vaccine. . Vaccine 23:, 1479–1490. [CrossRef] [PubMed]
    [Google Scholar]
  32. Stritzker J. , Janda J. , Schoen C. , Taupp M. , Pilgrim S. , Gentschev I. , Schreier P. , Geginat G. , Goebel W. . ( 2004; ). Growth, virulence, and immunogenicity of Listeria monocytogenes aro mutants. . Infect Immun 72:, 5622–5629. [CrossRef] [PubMed]
    [Google Scholar]
  33. Tangney M. , Gahan C. G. . ( 2010; ). Listeria monocytogenes as a vector for anti-cancer therapies. . Curr Gene Ther 10:, 46–55. [CrossRef] [PubMed]
    [Google Scholar]
  34. Vijh S. , Pamer E. G. . ( 1997; ). Immunodominant and subdominant CTL responses to Listeria monocytogenes infection. . J Immunol 158:, 3366–3371.[PubMed]
    [Google Scholar]
  35. Williams P. H. , Rabsch W. , Methner U. , Voigt W. , Tschäpe H. , Reissbrodt R. . ( 2006; ). Catecholate receptor proteins in Salmonella enterica: role in virulence and implications for vaccine development. . Vaccine 24:, 3840–3844. [CrossRef] [PubMed]
    [Google Scholar]
  36. Yap K. L. , Ada G. L. , McKenzie I. F. . ( 1978; ). Transfer of specific cytotoxic T lymphocytes protects mice inoculated with influenza virus. . Nature 273:, 238–239. [CrossRef] [PubMed]
    [Google Scholar]
  37. Yin Y. , Tian D. , Jiao H. , Zhang C. , Pan Z. , Zhang X. , Wang X. , Jiao X. . ( 2011; ). Pathogenicity and immunogenicity of a mutant strain of Listeria monocytogenes in the chicken infection model. . Clin Vaccine Immunol 18:, 500–505. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.049114-0
Loading
/content/journal/jmm/10.1099/jmm.0.049114-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error